Concepts of Computer Science

Gates and Circuits

Chapter Goals

- Lecture 1 :
- Identify basic gates
- Observe gate behaviour via truth table, logic diagram, and Boolean expression
- Build circuits from gate combinations
- Lecture 2 and 3 :
- Discuss circuit equivalence and Boolean algebra
- Discuss several common circuits in computing
- Build adders, multiplexers, S-R latches
- Lecture 1 :
- Identify basic gates
- Observe gate behaviour via truth table, logic diagram, and Boolean expression
- Build circuits from gate combinations

Gates and Circuits

- Gates

A device that performs a basic operation on electrical signals.

- Circuits

Gates combined to perform more complicated tasks.

Describing gates

Boolean expressions: Uses Boolean algebra, mathematical notation for expressing two-valued logic. Same algebra, but different symbols as CS-170.

Logic diagrams: A graphical representation of a circuit; each gate has its own symbol

Truth tables: A table showing all possible input values and the associated output values

Logic Gates

- Six types of gates
- NOT
- AND
- OR
- XOR
- NAND
- NOR

In CS-170 we don't consider XOR, NAND, and NOR as basic operations.

Likewise, from an electronics perspective, implication and equivalence are not basic gates

NOT

A NOT gate accepts one input signal (0 or 1) and returns the complementary (opposite) signal as output

AND

An AND gate accepts two input signals. If both are 1, the output is 1 ; otherwise the output is 0 .

Boolean Expression	Logic Diagram	Truth Table		
		A	B	X
		0	0	0
$X=A \cdot B$	$A \longrightarrow x$	1	0	0
		0	1	0
-		1	1	1

OR

An AND gate accepts two input signals. If both are 0 , the output is 0 ; otherwise the output is 1 .

XOR

An XOR gate accepts two input signals. If both are the same, the output is 0 ; otherwise, the output is 1

Boolean Expression	Logic Diagram	Truth Table		
		A	B	X
		0	0	0
$X=A \oplus B$		1	0	1
		0	1	1
\bigcirc		1	1	0

NAND

A NAND ("NOT of AND") gate accepts two input signals. If both are 1 , the output is 0 ; otherwise, the output is 1 .

Boolean Expression	Logic Diagram	Truth Table		
		A	B	X
		0	0	1
$X=(A \cdot B)^{\prime}$		1	0	1
		0	1	1
-		1	1	0

NOR

The NOR ("NOT of OR") gate accepts two inputs. If both are 0 , the output is 1 ; otherwise, the output is 0 .

Boolean Expression	Logic Diagram	Truth Table		
		A	B	x
$\mathrm{X}=(\mathrm{A}+\mathrm{B})^{\prime}$		0	0	1
	$A=00-x$	1	0	0
		0	1	0
		1	1	0

A note on notation

Here we have seen the use of $\boldsymbol{+}, \bullet$, and '
You may use $\mathbf{v}, \boldsymbol{\wedge}$, and \neg from propositional logic.

You may prefer the words OR, AND, and NOT, or even disjunction, conjunction, and negation.

You may even be familiar with ~ or ! for negation.

Just don't mix them. Stick to a convention.

Constructing gates

- Device that acts either as a wire that conducts electricity or as a resistor that blocks the flow of electricity, depending on the voltage level of an input signal.
- A transistor has no moving parts, yet it acts like a switch.
- Transistors are made of a semiconductor material, which is neither a particularly good conductor of electricity nor a particularly good insulator.
- Transistors are the basic building blocks for gates.

Constructing gates

- A transistor has three terminals:
- A collector
- A base
- An emitter
- If current flows into the Emitter then this results in the Source being connected to the Ground. This causes the output voltage to drop.

Constructing NOT gates

- This diagram shows how an NPN transistor might be connected to give a NOT gate.
- If there is a high signal coming into the base of the transistor, then the transistor lets current flow through. Thus pulling the out signal low.
- If there is a low signal coming into the base of the transistor, then the transistor does not let any current through. Thus, allowing the out signal high.

$X=A^{\prime}$

Constructing AND gates

- This diagram shows how an NPN transistor might be connected to give an AND gate.
- If there is a high signal coming into both transistors, then the source signal will pass through to the output and it will be high (1).
- If either transistor receives a low signal then the output signal is low (0).

Circuits

- We can combine individual gates together into more complex circuits
- Circuits can be described by:
- Boolean expressions: Same as for gates.
- Truth tables: Same as for gates.
- Logic diagrams: A graphical representation combining gate symbols.

Combinational Circuits

- Gates are combined into circuits by using the output of one gate as the input for another.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{X}
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	0
1	1	1	1

- Lecture 2:
- Discuss circuit equivalence and Boolean algebra
- Discuss several common circuits in computing

Circuit equivalence

- Circuits which produce the same output when provided identical inputs are call equivalent
- For example:

$$
A \cdot(B+C)=A \cdot B+A \cdot C
$$

The truth tables match. Therefore, these expressions are equivalent.

$\mathrm{A} \cdot(\mathrm{B}+\mathrm{C})$				$\mathrm{A} \cdot \mathrm{B}+\mathrm{A} \cdot \mathrm{C}$			
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{X}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{X}
0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0
0	1	0	0	0	1	0	0
1	1	0	1	1	1	0	1
0	0	1	0	0	0	1	0
1	0	1	1	1	0	1	1
0	1	1	0	0	1	1	0
1	1	1	1	1	1	1	1

Circuit equivalence

- Boolean algebra allows us to apply provable mathematical principles to help design circuits and identify equivalence.

PROPERTY	AND	OR
Commutative	$A B=B A$	$A+B=B+A$
Associative	$(A B) C=A(B C)$	$(A+B)+C=A+(B+C)$
Distributive	$A(B+C)=(A B)+(A C)$	$A+(B C)=(A+B)(A+C)$
Identity	$A 1=A$	$A+0=A$
Complement	$A\left(A^{\prime}\right)=0$	$A+\left(A^{\prime}\right)=1$
De Morgan's law	$(A B)^{\prime}=A^{\prime} O R B^{\prime}$	$(A+B)^{\prime}=A^{\prime} B^{\prime}$

AND (•) and OR (+)

- Why are we using the multiplication and addition operators here?
- Remember the Binary arithmetic section in the Number Systems lecture?

Binary Addition Table		
$\boldsymbol{+}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	1
$\mathbf{1}$	1	10

Binary Multiplication Table		
$\mathbf{~}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	0
$\mathbf{1}$	$\mathbf{0}$	1

AND (•) and OR (+)

- We are applying operators on Boolean values.
- Let's compare binary addition table against the OR truth table:

Binary Addition Table	
$0+0$	$\mathbf{0}$
$0+1$	1
$1+0$	1
$1+1$	10

\mathbf{A}	\mathbf{B}	\mathbf{X}
0	0	0
1	0	1
0	1	1
1	1	1

Using circuits to do stuff

- In the previous topic we discussed how our information is being represented by binary values.
- Given that our gates perform operations on binary values, can we design circuits which allow us to work with this underlying data/binary information?
- We could even use transistors (physical implementations of gates) to build this behaviour in hardware.

Adders

- Logical circuit designed to perform addition of binary values.
- Remember that an addition in binary can result in a carry out.

A	B	Sum	Carry Out
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

Let's build a circuit that reproduces this behaviour

Half Adder

- A half adder is a circuit that computes the sum of two bits and produces the correct carry bit as well.

A	B	Sum	Carry Out
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

Half Adder

- The half adder takes in two bits and computes the sum and carry.
- But when we add two bits in binary, we actually need 3 input values to be considered!
-Why?
- We have two digits to add at position \boldsymbol{n}, and the carry from position $\boldsymbol{n} \mathbf{- 1}$
- To handle this, we extend our half adder to a full adder...

Full Adder

- Circuit which takes a carry-in value as well the two digits to add

$$
\text { sum }=A \oplus B \oplus C
$$

$$
\text { carry }=(A . B)+(C .(A \oplus B))
$$

where A and B are the digits in that position, and C is the carry in

Full Adder

Full Adder

A	B	C	Sum	Carry Out
0	0	0	0	0
1	0	0	1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	1	1	1

Full Adder

- The full adder adds two bits (and the carry in)
- But often our representations are multiples of 8 bits (a byte)
- We can therefore combine 8 full adders together to create a single 8 -bit adder. This allows us to add two 8 -bit values together using logical circuitry and electrical signals

8-bit Adder

Multiplexers

- Often, we want to move values around our computer:
- Passing them to and from storage
- Pass them to the processor to perform calculations
- Get values to and from auxiliary input/output devices
- We pass electrical signals down wiring to their destination, but we don't want to have loads of unnecessary wiring.
- However, we need to make sure that signals are routed correctly. We don't want signals overlapping or going to the wrong destination.

Multiplexers

- A multiplexer (MUX) is a circuit which uses input control signals (S) to determine which of the input data signals (D) is routed to the output signal (F)
- E.g. we have 8 possible data signals, and we use 3 control signals to determine which one is routed to the output.
- Why do we need 3 control signals in this example?

Multiplexers

S0	S1	S2	F
0	0	0	D0
1	0	0	D1
0	1	0	D2
1	1	0	D3
0	0	1	D4
1	0	1	D5
0	1	1	D6
1	1	1	D7

Multiplexers

- At the other end of the output line (F) we may have a demultiplexer (or DEMUX), which would allow us to do the opposite.
- We can use control signals as a routing switch to say which of several output lines our signal will be broadcast to.

Gates as memory units

- Digital circuits can be used to store information
- These circuits form a sequential circuit, because the output of the circuit is also used as input to the circuit.
- By constructing a suitable circuit, we can store a singular bit of information (either 0 or 1).
- To do this we can use a circuit called the S-R Latch

S-R Latch (Set/Reset Latch)

- An S-R Latch stores a single binary value
- It can be updated by changing the signal on S and R, which in turn affect X and Y
- If:
- $X=1$ and $Y=0$, then the value stored is 1
- $X=0$ and $Y=1$, then the value stored is 0
- We can design an S-R Latch in a variety of ways, depending on the kinds of gates
 we use

S-R Latch (Set/Reset Latch)

- Assume that S and R are never both 0 at the same time
- The design of this circuit guarantees that the two outputs X and Y are always complements of each other
- The value of X at any point in time is considered to be the current state of the circuit
- Therefore, if X is 1 , the circuit is storing a
 1 ; if X is 0 , the circuit is storing a 0

S-R Latch (Set/Reset Latch)

- If S and R are both 1 , the output on X will not change.
- To set the value of X to 1 , we set S to 0 and then change S back to 1 to stabilise.
- To set the value of X to 0 we set R to 0 , and then change R back to 1 to stabilise.
- Setting both S and R to 0 at the same time is an invalid action.

S-R Latch (Set/Reset Latch)

- Truth Table:

\mathbf{S}	\mathbf{R}	\mathbf{X}	\mathbf{Y}	Notes
1	0	0	1	
1	1	0	1	(if following $S=1, R=0$)
0	1	1	0	
1	1	1	0	(if following $S=0, R=1$)
0	0	1	1	Invalid operation

S-R Latch Worked Example

- But really, this is confusing without considering the temporality of the system.
- Changing a value in S or R creates a voltage change in the system that travels through the circuit, impacting on the outputs of other gates.

S-R Latch Worked Example

Consider and initial state of $S=1, R=1$, and $X=1$:

What is Y ?

S-R Latch Worked Example

Consider and initial state of $S=1, R=1$, and $X=1$:

What are the values of the "?" ?

What is Y ?

S-R Latch Worked Example

Consider and initial state of $S=1, R=1$, and $X=1$:

What is Y ?

S-R Latch Worked Example

Consider and initial state of $S=1, R=1$, and $X=1$:

So then we can compute the output of the NAND

What is Y ?

S-R Latch Worked Example

Consider and initial state of $S=1, R=1$, and $X=1$:

What is Y ?

S-R Latch Worked Example

Consider and initial state of $S=1, R=1$, and $X=1$:

This output doesn't change, so our circuit is stable. This S-R Latch is storing the value 1 (the value in X)

What is Y ?

S-R Latch Worked Example

Now let's change the signal going into R to 0 :

S-R Latch Worked Example

Now let's change the signal going into R to 0 :

S-R Latch Worked Example

Now let's change the signal going into R to 0 :

S-R Latch Worked Example

Now let's change the signal going into R to 0 :

S-R Latch Worked Example

Now let's change the signal going into R to 0 :

So then we can update the output of the

NAND

S-R Latch Worked Example

Now let's change the signal going into R to 0 :

S-R Latch Worked Example

Now let's change the signal going into R to 0 :

S-R Latch Worked Example

Now let's change the signal going into R to 0 :

We finally set R back to 1. This doesn't change the output of the NAND or have any effect on the values.

We do this final operation so that our S-R Latch is back to a state where we can update the signal on either S or

R without it breaking the latch

S-R Latch

-This is why the temporality (behaviour over time) is important!
-Try working through the S-R latch yourself.
-What happens if we set both S and R to 0 ?
-How do we initialise the starting values of the S-R latch?

