
Concepts of 
Computer Science 

Gates and Circuits

116/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Chapter Goals

• Lecture 1:

• Identify basic gates

• Observe gate behaviour via truth table, logic diagram, and Boolean expression

• Build circuits from gate combinations

• Lecture 2 and 3:

• Discuss circuit equivalence and Boolean algebra

• Discuss several common circuits in computing

• Build adders, multiplexers, S-R latches

216/11/2022 CS-150 Concepts of Computer Science - M. Edwards



• Lecture 1:

• Identify basic gates

• Observe gate behaviour via truth table, logic diagram, and Boolean 

expression

• Build circuits from gate combinations

316/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Gates and Circuits

• Gates
A device that performs a basic operation on electrical 
signals. 

• Circuits
Gates combined to perform more complicated tasks.

416/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Describing gates

Boolean expressions: Uses Boolean algebra, mathematical 
notation for expressing two-valued logic. Same algebra, but 
different symbols as CS-170.

Logic diagrams: A graphical representation of a circuit; each 
gate has its own symbol

Truth tables: A table showing all possible input values and the 
associated output values

516/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Logic Gates

• Six types of gates
• NOT 

• AND

• OR 

• XOR

• NAND

• NOR

616/11/2022 CS-150 Concepts of Computer Science - M. Edwards

In CS-170 we don’t consider 
XOR, NAND, and NOR as basic 

operations. 

Likewise, from an electronics 
perspective, implication and 

equivalence are not basic 
gates



NOT

A NOT gate accepts one input signal (0 or 1) and returns the 
complementary (opposite) signal as output

716/11/2022 CS-150 Concepts of Computer Science - M. Edwards

Logic DiagramBoolean Expression Truth Table

X = A’ A X
A X

0 1

1 0



AND

An AND gate accepts two input signals. If both are 1, the output 
is 1; otherwise the output is 0.

816/11/2022 CS-150 Concepts of Computer Science - M. Edwards

Logic DiagramBoolean Expression Truth Table

X = A ∙ B

A B X

0 0 0

1 0 0

0 1 0

1 1 1

A
X

B



OR

An AND gate accepts two input signals. If both are 0, the output 
is 0; otherwise the output is 1.

916/11/2022 CS-150 Concepts of Computer Science - M. Edwards

Logic DiagramBoolean Expression Truth Table

X = A + B

A B X

0 0 0

1 0 1

0 1 1

1 1 1

A
X

B



XOR

An XOR gate accepts two input signals. If both are the same, the 

output is 0; otherwise, the output is 1

1016/11/2022 CS-150 Concepts of Computer Science - M. Edwards

Logic DiagramBoolean Expression Truth Table

X = A ⊕ B

A B X

0 0 0

1 0 1

0 1 1

1 1 0

A
X

B



NAND

A NAND (“NOT of AND”) gate accepts two input signals. If both 
are 1, the output is 0; otherwise, the output is 1.

1116/11/2022 CS-150 Concepts of Computer Science - M. Edwards

Logic DiagramBoolean Expression Truth Table

X = (A ∙ B)’

A B X

0 0 1

1 0 1

0 1 1

1 1 0

X
A
B



NOR

The NOR (“NOT of OR”) gate accepts two inputs. If both are 0, 

the output is 1; otherwise, the output is 0.

1216/11/2022 CS-150 Concepts of Computer Science - M. Edwards

Logic DiagramBoolean Expression Truth Table

X = (A + B)’

A B X

0 0 1

1 0 0

0 1 0

1 1 0

A
X

B



A note on notation

Here we have seen the use of +, •, and ′

You may use ˅, ˄ , and ¬ from propositional logic.

You may prefer the words OR, AND, and NOT, or even disjunction, 
conjunction, and negation.

You may even be familiar with ~ or ! for negation.

Just don’t mix them. Stick to a convention.

1316/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Constructing gates

• Device that acts either as a wire that conducts electricity or 
as a resistor that blocks the flow of electricity, depending on 
the voltage level of an input signal.

• A transistor has no moving parts, yet it acts like a switch.

• Transistors are made of a semiconductor material, which is 
neither a particularly good conductor of electricity nor a 
particularly good insulator.

• Transistors are the basic building blocks for gates.

1416/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Constructing gates

• A transistor has three terminals:
• A collector
• A base
• An emitter

• If current flows into the Emitter then this 
results in the Source being connected to 
the Ground. This causes the output 
voltage to drop.

1516/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Constructing NOT gates

• This diagram shows how an NPN transistor 
might be connected to give a NOT gate. 

• If there is a high signal coming into the 
base of the transistor, then the transistor 
lets current flow through. Thus pulling the 
out signal low.

• If there is a low signal coming into the 
base of the transistor, then the transistor 
does not let any current through. Thus, 
allowing the out signal high.

1616/11/2022 CS-150 Concepts of Computer Science - M. Edwards

X = A’

A

X

Source 



Constructing AND gates

• This diagram shows how an NPN transistor 
might be connected to give an AND gate. 

• If there is a high signal coming into both 
transistors, then the source signal will pass 
through to the output and it will be high (1).

• If either transistor receives a low signal 
then the output signal is low (0). 

1716/11/2022 CS-150 Concepts of Computer Science - M. Edwards

X = A ∙ B

A

X

Source 

B



Circuits

• We can combine individual gates together into more complex 
circuits

• Circuits can be described by: 
• Boolean expressions: Same as for gates.
• Truth tables: Same as for gates. 
• Logic diagrams: A graphical representation combining gate symbols.

1816/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Combinational Circuits

• Gates are combined into circuits by using the 
output of one gate as the input for another.

1916/11/2022 CS-150 Concepts of Computer Science - M. Edwards

A ∙ B + A ∙ C

A B C X

0 0 0 0

1 0 0 0

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 1

0 1 1 0

1 1 1 1



• Lecture 2:

• Discuss circuit equivalence and Boolean algebra

• Discuss several common circuits in computing

2016/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Circuit equivalence

• Circuits which produce the same 
output when provided identical 
inputs are call equivalent

• For example:

A ∙ (B+C) = A ∙ B + A ∙ C

The truth tables match. Therefore, 
these expressions are equivalent.

2116/11/2022 CS-150 Concepts of Computer Science - M. Edwards

A B C X

0 0 0 0

1 0 0 0

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 1

0 1 1 0

1 1 1 1

A B C X

0 0 0 0

1 0 0 0

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 1

0 1 1 0

1 1 1 1

A ∙ B + A ∙ CA ∙ (B + C)



Circuit equivalence

• Boolean algebra allows us to apply provable mathematical 
principles to help design circuits and identify equivalence.

2216/11/2022 CS-150 Concepts of Computer Science - M. Edwards



AND (∙) and OR (+)

• Why are we using the multiplication and addition operators 
here? 

• Remember the Binary arithmetic section in the Number 
Systems lecture?

2316/11/2022 CS-150 Concepts of Computer Science - M. Edwards

Binary Addition Table

+ 0 1

0 0 1

1 1 10

Binary Multiplication Table

∙ 0 1

0 0 0

1 0 1



AND (∙) and OR (+)

• We are applying operators on Boolean values. 

• Let’s compare binary addition table against the OR truth table:

2416/11/2022 CS-150 Concepts of Computer Science - M. Edwards

A B X

0 0 0

1 0 1

0 1 1

1 1 1

Binary Addition Table

0 + 0 0

0 + 1 1

1 + 0 1

1 + 1 10



Using circuits to do stuff

• In the previous topic we discussed how our information is being 
represented by binary values.

• Given that our gates perform operations on binary values, can 
we design circuits which allow us to work with this underlying 
data/binary information? 

• We could even use transistors (physical implementations of 
gates) to build this behaviour in hardware.

2516/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Adders

• Logical circuit designed to perform addition of binary values.

• Remember that an addition in binary can result in a carry out.

2616/11/2022 CS-150 Concepts of Computer Science - M. Edwards

A B Sum Carry Out

0 0 0 0

1 0 1 0

0 1 1 0

1 1 0 1

Let’s build a 
circuit that 
reproduces 

this behaviour



Half Adder

• A half adder is a circuit that computes the sum of two bits and 
produces the correct carry bit as well.

2716/11/2022 CS-150 Concepts of Computer Science - M. Edwards

A B Sum Carry Out

0 0 0 0

1 0 1 0

0 1 1 0

1 1 0 1

A
Sum

B

Carry

sum = A ⊕ B
carry = A ∙ B



Half Adder

• The half adder takes in two bits and computes the sum and 
carry.

• But when we add two bits in binary, we actually need 3 input 
values to be considered! 

• Why?
• We have two digits to add at position n, and the carry from position n-1

• To handle this, we extend our half adder to a full adder…

2816/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Full Adder

• Circuit which takes a carry-in value as well the two digits to add

sum = A B  C

carry = (A.B) + (C.(A  B))

where A and B are the digits in that position, and C is the carry in

2916/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Half Adder 2

Half Adder 1

Full Adder

3016/11/2022 CS-150 Concepts of Computer Science - M. Edwards

C
SumA

B

Carry



Full Adder

3116/11/2022 CS-150 Concepts of Computer Science - M. Edwards

A B C Sum Carry Out

0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 1



Full Adder

• The full adder adds two bits (and the carry in)

• But often our representations are multiples of 8 bits (a byte)

• We can therefore combine 8 full adders together to create a 
single 8-bit adder. This allows us to add two 8-bit values 
together using logical circuitry and electrical signals

3216/11/2022 CS-150 Concepts of Computer Science - M. Edwards



8-bit Adder

3316/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Multiplexers

• Often, we want to move values around our computer:
• Passing them to and from storage
• Pass them to the processor to perform calculations
• Get values to and from auxiliary input/output devices

• We pass electrical signals down wiring to their destination, but 
we don’t want to have loads of unnecessary wiring.

• However, we need to make sure that signals are routed 
correctly. We don’t want signals overlapping or going to the 
wrong destination.

3416/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Multiplexers

• A multiplexer (MUX) is a circuit which 
uses input control signals (S) to 
determine which of the input data 
signals (D) is routed to the output 
signal (F)

• E.g. we have 8 possible data signals, 
and we use 3 control signals to 
determine which one is routed to the 
output.

• Why do we need 3 control signals in 
this example?

3516/11/2022 CS-150 Concepts of Computer Science - M. Edwards

S0 S1 S2 F

0 0 0 D0

1 0 0 D1

0 1 0 D2

1 1 0 D3

0 0 1 D4

1 0 1 D5

0 1 1 D6

1 1 1 D7



Multiplexers

3616/11/2022 CS-150 Concepts of Computer Science - M. Edwards

F

S0 S1 S2

D1

D4

D0

D5

D2

D6

D3

D7

S0 S1 S2 F

0 0 0 D0

1 0 0 D1

0 1 0 D2

1 1 0 D3

0 0 1 D4

1 0 1 D5

0 1 1 D6

1 1 1 D7



Multiplexers

• At the other end of the output line (F) we may have a 
demultiplexer (or DEMUX), which would allow us to do the 
opposite.

• We can use control signals as a routing switch to say which of 
several output lines our signal will be broadcast to.

3716/11/2022 CS-150 Concepts of Computer Science - M. Edwards



Gates as memory units

• Digital circuits can be used to store information

• These circuits form a sequential circuit, because the output of 
the circuit is also used as input to the circuit.

• By constructing a suitable circuit, we can store a singular bit of 
information (either 0 or 1). 

• To do this we can use a circuit called the S-R Latch

3816/11/2022 CS-150 Concepts of Computer Science - M. Edwards



S-R Latch (Set/Reset Latch)

• An S-R Latch stores a single binary value

• It can be updated by changing the signal 
on S and R, which in turn affect X and Y

• If:
• X = 1 and Y = 0, then the value stored is 1
• X = 0 and Y = 1, then the value stored is 0

• We can design an S-R Latch in a variety 
of ways, depending on the kinds of gates 
we use

3916/11/2022 CS-150 Concepts of Computer Science - M. Edwards



S-R Latch (Set/Reset Latch)

• Assume that S and R are never both 0 at 
the same time

• The design of this circuit guarantees that 
the two outputs X and Y are always 
complements of each other

• The value of X at any point in time is 
considered to be the current state of the 
circuit

• Therefore, if X is 1, the circuit is storing a 
1; if X is 0, the circuit is storing a 0

4016/11/2022 CS-150 Concepts of Computer Science - M. Edwards



S-R Latch (Set/Reset Latch)

• If S and R are both 1, the output on X will 
not change.

• To set the value of X to 1, we set S to 0 
and then change S back to 1 to stabilise. 

• To set the value of X to 0 we set R to 0, 
and then change R back to 1 to stabilise.

• Setting both S and R to 0 at the same 
time is an invalid action.

4116/11/2022 CS-150 Concepts of Computer Science - M. Edwards



S-R Latch (Set/Reset Latch)

• Truth Table:

4216/11/2022 CS-150 Concepts of Computer Science - M. Edwards

S R X Y Notes

1 0 0 1

1 1 0 1 (if following S=1,R=0)

0 1 1 0

1 1 1 0 (if following S=0,R=1)

0 0 1 1 Invalid operation



S-R Latch Worked Example

• But really, this is confusing without considering the 
temporality of the system.

• Changing a value in S or R creates a voltage change in 
the system that travels through the circuit, impacting 
on the outputs of other gates.

4316/11/2022 CS-150 Concepts of Computer Science - M. Edwards



S-R Latch Worked Example

Consider and initial state of S = 1, R = 1, and X = 1:

What is Y? 

4416/11/2022 CS-150 Concepts of Computer Science - M. Edwards



S-R Latch Worked Example

Consider and initial state of S = 1, R = 1, and X = 1:

What is Y? 

4516/11/2022 CS-150 Concepts of Computer Science - M. Edwards

1

1

1

?
?

?
What are 
the values 

of the “?” ?



S-R Latch Worked Example

Consider and initial state of S = 1, R = 1, and X = 1:

What is Y? 

4616/11/2022 CS-150 Concepts of Computer Science - M. Edwards

1

1

1

1
?

?This is 
equal to X, 

it’s the 
same wire



S-R Latch Worked Example

Consider and initial state of S = 1, R = 1, and X = 1:

What is Y? 

4716/11/2022 CS-150 Concepts of Computer Science - M. Edwards

1

1

1

1
0

?
So then we can 

compute the 
output of the 

NAND



S-R Latch Worked Example

Consider and initial state of S = 1, R = 1, and X = 1:

What is Y? 

4816/11/2022 CS-150 Concepts of Computer Science - M. Edwards

1

1

1

1
0

0This is 
equal to Y, 

it’s the 
same wire



S-R Latch Worked Example

Consider and initial state of S = 1, R = 1, and X = 1:

What is Y? 

4916/11/2022 CS-150 Concepts of Computer Science - M. Edwards

1

1

1

1
0

0

This output 
doesn’t change, 
so our circuit is 
stable. This S-R 
Latch is storing 
the value 1 (the 

value in X)



S-R Latch Worked Example

Now let’s change the signal going into R to 0: 

5016/11/2022 CS-150 Concepts of Computer Science - M. Edwards

1

1

1

1
0

0



S-R Latch Worked Example

Now let’s change the signal going into R to 0: 

5116/11/2022 CS-150 Concepts of Computer Science - M. Edwards

1

0

1

1
0

0

Let’s 
update R 
to be 0



S-R Latch Worked Example

Now let’s change the signal going into R to 0: 

5216/11/2022 CS-150 Concepts of Computer Science - M. Edwards

1

0

1

1
1

0
So then we can 

update the 
output of the 

NAND



S-R Latch Worked Example

Now let’s change the signal going into R to 0: 

5316/11/2022 CS-150 Concepts of Computer Science - M. Edwards

1

0

1

1
1

1
This is 

equal to Y, 
it’s the 

same wire. 
So it 

updates as 
well



S-R Latch Worked Example

Now let’s change the signal going into R to 0: 

5416/11/2022 CS-150 Concepts of Computer Science - M. Edwards

1

0

0

1
1

1

So then we can 
update the 

output of the 
NAND



S-R Latch Worked Example

Now let’s change the signal going into R to 0: 

5516/11/2022 CS-150 Concepts of Computer Science - M. Edwards

1

0

0

0
1

1
This is 

equal to X, 
it’s the 

same wire. 
So it 

updates as 
well



S-R Latch Worked Example

Now let’s change the signal going into R to 0: 

5616/11/2022 CS-150 Concepts of Computer Science - M. Edwards

1

0

0

0
1

1

This output 
doesn’t change, 
so our circuit is 
stable. This S-R 
Latch is storing 
the value 0 (the 

value in X)



S-R Latch Worked Example

Now let’s change the signal going into R to 0: 

5716/11/2022 CS-150 Concepts of Computer Science - M. Edwards

1

1

0

0
1

1
We finally set R 
back to 1. This 
doesn’t change 
the output of 
the NAND or 

have any effect 
on the values.

We do this final 
operation so that 

our S-R Latch is back 
to a state where we 

can update the 
signal on either S or 

R without it 
breaking the latch



S-R Latch

•This is why the temporality (behaviour over time) is important!

•Try working through the S-R latch yourself.

•What happens if we set both S and R to 0?

•How do we initialise the starting values of the S-R latch?

5816/11/2022 CS-150 Concepts of Computer Science - M. Edwards


