Concepts of
Computer Science

Gates and Circuits

Chapter Goals

e Lecture 1:

« ldentify basic gates
» Observe gate behaviour via truth table, logic diagram, and Boolean expression

 Build circuits from gate combinations

e Lecture 2 and 3:

 Discuss circuit equivalence and Boolean algebra

» Discuss several common circuits in computing

» Build adders, multiplexers, S-R latches R

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 2

* Lecture 1:
* |dentify basic gates
« Observe gate behaviour via truth table, logic diagram, and Boolean
expression

 Build circuits from gate combinations

e —

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 3

Gates and Circuits

* Gates
A device that performs a basic operation on electrical
signals.

 Circuits
Gates combined to perform more complicated tasks.

= — I

e —

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 4

Describing gates

Boolean expressions: Uses Boolean algebra, mathematical
notation for expressing two-valued logic. Same algebra, but
different symbols as CS-170.

Logic diagrams: A graphical representation of a circuit; each
gate has its own symbol

Truth tables: A table showing all possible input values and the
associated output values

Logic Gates

» SiX types of gates
e NOT
* AND
* OR
« XOR
* NAND
* NOR

In CS-170 we don’t consider
XOR, NAND, and NOR as basic

operations.

Likewise, from an electronics
perspective, implication and
equivalence are not basic
gates

— =

R ——————

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards

NOT

A NOT gate accepts one input signal (0 or 1) and returns the

complementary (opposite) signal as output

/ Boolean Expression Logic Diagram

Truth Table

~

16/11/2022

CS-150 Concepts of Computer Science - M. Edwards

AND

An AND gate accepts two input signals. If both are 1, the output
IS 1; otherwise the output is O.

/ Boolean Expression Logic Diagram Truth Table \

A B X
0
A
X=A-B A }x 1
0
1

= = O O
R O O O

Ve

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 8

OR

An AND gate accepts two input signals. If both are 0, the output
IS O0; otherwise the output is 1.

/ Boolean Expression Logic Diagram Truth Table \

A B X

m =B O O
N =

0
1
0
1

_ A
X=A+B 2) >—X
5& ﬁ

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 9

XOR

An XOR gate accepts two input signals. If both are the same, the
output Is O; otherwise, the output is 1

/ Boolean Expression Logic Diagram Truth Table \

A B X

= O O
o = = O

0
1
0
1

Ve

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 10

NAND

A NAND ("NOT of AND") gate accepts two input signals. If both
are 1, the output is O; otherwise, the output is 1.

/ Boolean Expression Logic Diagram Truth Table \

A B X

m_ = O O
O R KL K=

0
X = (A - B /g DO—X 1

0

1 /““\Q

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 11

NOR

The NOR ("NOT of OR") gate accepts two inputs. If both are 0,
the output is 1; otherwise, the output is O.

/ Boolean Expression Logic Diagram Truth Table \

A B X

= = O O
© O O ¥

0
1
0
1

e

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 12

A note on notation

Here we have seen the use of +, ¢, and '’

You may use V, A, and - from propositional logic.

You may prefer the words OR, AND, and NOT, or even disjunction,
conjunction, and negation.

You may even be familiar with ~ or ! for negation.

Just don’t mix them. Stick to a convention.

Constructing gates

* Device that acts either as a wire that conducts electricity or
as a resistor that blocks the flow of electricity, depending on
the voltage level of an input signal.

« Atransistor has no moving parts, yet it acts like a switch.

* Transistors are made of a semiconductor material, which is
neither a particularly good conductor of electricity nor a
particularly good insulator.

* Transistors are the basic building blocks for gates.

Constructing gates

e A transistor has three terminals:

* A collector
A base
 An emitter

e |If current flows into the Emitter then this
results in the Source being connected to
the Ground. This causes the output

voltage to drop.

— /M'

e —

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards

——

Constructing NOT gates

 This diagram shows how an NPN transistor
might be connected to give a NOT gate.

* If there Is a high signal coming into the
pase of the transistor, then the transistor
ets current flow through. Thus pulling the
out signal low.

e If there Is a low signal coming into the
base of the transistor, then the transistor
does not let any current through. Thus,
allowing the out signal high.

Source
X
A
X=A
Nﬁ_—_ﬂ“

Constructing AND gates

 This diagram shows how an NPN transistor
might be connected to give an AND gate.

* If there Is a high signal coming into both
transistors, then the source signal will pass
through to the output and it will be high (1).

* |f either transistor receives a low signal
then the output signal is low (0).

Source

X
— X=A'B
J— N

Circults

* We can combine individual gates together into more complex
circuits

* Circuits can be described by:
« Boolean expressions: Same as for gates.
 Truth tables: Same as for gates.
 Logic diagrams: A graphical representation combining gate symbols.

——

— ——— e =

e —

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards

18

Combinational Circuits

« Gates are combined into circuits by using the

output of one gate as the input for another.
A—o— _D
B | — X
N A-B+A-C
C - E
—_— //{f

0

m, B, O O Fr Kk O

0

0
0
0
1
1
1
1

A B C X

_ O - O —» O O O

i

e Lecture 2:

 Discuss circuit equivalence and Boolean algebra

 Discuss several common circuits in computing

———

= /’///

R

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards

20

Circuit equivalence

output when provided identical
iInputs are call equivalent

* For example:
A-(B+tC)=A-B+A:-C

The truth tables match. Therefore,

» Circuits which produce the same ISR
0 O
1 0
0 1
1 1
0 O
1 0
0 1
these expressions are equivalent. T

|—\|—\|—\|—\OOOOH:(>

- -

Circuit equivalence

* Boolean algebra allows us to apply provable mathematical
principles to help design circuits and identify equivalence.

PROPERTY AND OR
Commutative AB = BA A+B=B+A
Associative (AB) C = A (BCO) A+B)+C=A+B+0
Distributive A (B + C) = (AB) + (AC) A+BC)=(A+B)(A+0C)
|dentity A1=A A+0=A
Complement AA) =0 A+ (A)=1

e ——————

\
— De Morgan'slaw (AB)' = A' OR B’ (A +B) =AB' ————

16/11/2022 22

AND (-) and OR (+)

* Why are we using the multiplication and addition operators
here?

« Remember the Binary arithmetic section in the Number
Systems lecture?

Binary Addition Table Binary Multiplication Table
+ 0 1 - 0 1
0 0 1 0 0 0
1 1 10 1 0 1

AND (-) and OR (+)

* We are applying operators on Boolean values.

 Let’'s compare binary addition table against the OR truth table:

Binary Addition Table “nn

0+0 0 0 0 0
O0+1 1 1 0 1
1+0 1 0 1 1
1+1 10 1 1 1
= \
— e D

Using circuits to do stuff

* In the previous topic we discussed how our information is being
represented by binary values.

« Given that our gates perform operations on binary values, can
we design circuits which allow us to work with this underlying
data/binary information?

* We could even use transistors (physical implementations of
gates) to build this behaviour in hardware.

Adders

* Logical circuit designed to perform addition of binary values.

« Remember that an addition in binary can result in a carry out.
0 0 0 Let’s build a

0

0 circuit that
0 reproduces
1

this behaviour

1 0 1
0 1 1
1 1 0

— 4’;’2”/}*

— =
R ——————

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 26

Half Adder

A half adder Is a circuit that computes the sum of two bits and

produces the correct carry bit as well.
A
B_.:)Z>_—- >um

Carry

Sum Carry Out

A
0
1
0
1

R L, O O
O L L O

Half Adder

* The half adder takes in two bits and computes the sum and
carry.

« But when we add two bits in binary, we actually need 3 input
values to be considered!

* Why?
« We have two digits to add at position n, and the carry from position n-1

 To handle this, we extend our half adder to a full adder...

Full Adder

e Circuit which takes a carry-in value as well the two digits to add

sum=A®@BDC
carry = (A.B) + (C.(A © B))

where A and B are the digits in that position, and C is the carry in

e —

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 29

Full Adder

——

p
sl

)

_/

\ Half Adder 1 /

Sum

-

16/11/2022

e —

CS-150 Concepts of Computer Science - M. Edwards

Full Adder

A B C | Sum | CarryOut_

0

0
1

0
0

0
0

0
1

Sum

A—e)

Full Adder

 The full adder adds two bits (and the carry In)
 But often our representations are multiples of 8 bits (a byte)
* We can therefore combine 8 full adders together to create a

single 8-bit adder. This allows us to add two 8-bit values
together using logical circuitry and electrical signals

?
i}

=) >

8-bit Adder =

L
.

D

il

s2pa—

43 fia—

———

_—___._.______,____._——
e ———

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards

]

=) >

s

i

g &

mp

3 X

by

Ty

© [b [b2 [Bl 1

Cout S7 S6 S5 S4 S3 S2 S1 SO

33

Multiplexers

« Often, we want to move values around our computer:

« Passing them to and from storage
« Pass them to the processor to perform calculations
« Get values to and from auxiliary input/output devices

* We pass electrical signals down wiring to their destination, but
we don’t want to have loads of unnecessary wiring.

* However, we need to make sure that signals are routed
correctly. We don’t want signals overlapping or going to the
wrong destination.

—_— ——— S

————

Multiplexers m?-m.

0 O
_ _ o | 1 0 O D1
« A multiplexer (MUX) is a circuit which
uses input control signals (S) to N
determine which of the input data 1 1 0 D3
signals (D) is routed to the output 0 o0 1 DA
signal (F)
1 0 1 D5
* E.g. we have 8 possible data signals, o 1 1 D6
and we use 3 control signals to
determine which one is routed to the 1 1 1 Db/
output. DO DI D2 D3 D4 D5 D6 D7

« Why do we need 3 control signalsin ~ *°

this example? -

— //sz

e —

L/

4

HE

SO S1 S2

Multiplexers

D3

D6
D7

Multiplexers

At the other end of the output line (F) we may have a
demultiplexer (or DEMUX), which would allow us to do the
opposite.

* We can use control signals as a routing switch to say which of
several output lines our signal will be broadcast to.

Muix Demux

Canversation A Canversation A
" —
Caonvergation C —p—e -—

Conversation D —p—=> | I

— Conversation E 9—’ l_ “&

e — e ——

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 37

Gates as memory units

* Digital circuits can be used to store information

* These circuits form a sequential circuit, because the output of
the circuit is also used as input to the circuit.

* By constructing a suitable circuit, we can store a singular bit of
information (either O or 1).

* To do this we can use a circuit called the S-R Latch

S-R Latch (Set/Reset Latch)

 An S-R Latch stores a single binary value

* |t can be updated by changing the signal
on S and R, which in turn affect X and Y

e« X=1 and
e« X=0and

* We can design an S-R Latch in a variety
of ways, depending on the kinds of gates

we use

——

Y = 0, then the value stored is 1
Y = 1, then the value stored is O

— el

16/11/2022

e —

CS-150 Concepts of Computer Science - M. Edwards

S-R Latch (Set/Reset Latch)

* Assume that S and R are never both 0 at
the same time

* The design of this circuit guarantees that
the two outputs X and Y are always
complements of each other

* The value of X at any point in time Is
considered to be the current state of the
circuit

* Therefore, If X Is 1, the circuit Is storing a
1; 1f X is O, the circuit is storing a O

S-R Latch (Set/Reset Latch)

 If S and R are both 1, the output on X will

not change.

* To set the value of Xto 1, we set Sto O
and then change S back to 1 to stabllise.

 To set the value of X to O we set R to 0O,
and then change R back to 1 to stabilise.

 Setting both S and R to O at the same

time 1s an invalid action.

&

— el

e —

16/11/2022

CS-150 Concepts of Computer Science - M. Edwards

S-R Latch (Set/Reset Latch)

* Truth Table:

S
SR X Y Nows
1 0 0 1

1 1 0 1 (if following S=1,R=0)

0 1 1 0

1 1 1 0 (if following S=0,R=1) R

0 0 1 1 Invalid operation
- //

S-R Latch Worked Example

 But really, this is confusing without considering the
temporality of the system.

* Changing a value in S or R creates a voltage change in
the system that travels through the circuit, impacting
on the outputs of other gates.

S-R Latch Worked Example

Consider and initial stateof S =1, R=1, and X = 1;

S X

What is Y?

= ////

e ——

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards

44

S-R Latch Worked Example

Consider and initial stateof S =1, R=1, and X = 1;

S
1 X 1
t)
" What are
the values
? y - of the “?” ?
17— '

What is Y?

— I’/

e —

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 45

S-R Latch Worked Example

Consider and initial stateof S =1, R=1, and X = 1;

S
1 X 1
This is 7
equal to X,
it’s the 1
same wire
Y9
1g

What is Y?

— I’/

e —

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards

46

S-R Latch Worked Example

Consider and initial stateof S =1, R=1, and X = 1;

:l S

So then we can
compute the
output of the

NAND

What is Y?
A /J/%

e —

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 47

S-R Latch Worked Example

Consider and initial stateof S =1, R=1, and X = 1;

S
1 X 1
This is O
equal to,
it’s the
same wire 1 Y O
1ag—

What is Y?

— I’/

e —

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards

48

S-R Latch Worked Example

Consider and initial stateof S =1, R=1, and X = 1;

This output
doesn’t change,
SO our circuit is
stable. This S-R
Latch is storing

the value 1 (the
value in X)

What is Y?
———

— =

s

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 49

S-R Latch Worked Example

Now let’'s change the signal going into R to O:

18

—_— __———

e —

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards

50

S-R Latch Worked Example

Now let's change the signal going into R to O:

S
1 X 1
0
Let’s
update R 1 Y
tobe O O
07—

— I’/

S —

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards

51

S-R Latch Worked Example

Now let's change the signal going into R to O:

:l S

So then we can
update the
output of the

NAND

& /7/%

S —

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 52

S-R Latch Worked Example

Now let's change the signal going into R to O:

This is
equal to,
it’s the
same wire.

So it
updates as

——

S —

16/11/2022

CS-150 Concepts of Computer Science - M. Edwards

53

S-R Latch Worked Example

Now let's change the signal going into R to O:

18

So then we can
update the

output of the
NAND

& /7/%

S —

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards

54

S-R Latch Worked Example

Now let's change the signal going into R to O:

This is
equal to X,
it’s the
same wire.

So it
updates as

——

S —

16/11/2022

CS-150 Concepts of Computer Science - M. Edwards

55

S-R Latch Worked Example

Now let's change the signal going into R to O:

This output
doesn’t change,
SO our circuit is
stable. This S-R
Latch is storing

the value O (the
value in X)

———

— =

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 56

S-R Latch Worked Example

Now let's change the signal going into R to O:

Q We do this final
1 X O operation so that

our S-R Latch is back
to a state where we

We finally set R

back to 1. This 1
doesn’t change

can update the

the output of

O signal on either S or
hthe NANfoort | Y 1 R without it

ave any efrec 1 breaking the latch
on the values. R

& ///f

— =
R ——————

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 57

S-R Latch

*This is why the temporality (behaviour over time) is important!
*Try working through the S-R latch yourself.
What happens if we set both S and R to 0?

How do we Initialise the starting values of the S-R latch?

——

— ___——— - =

e —

16/11/2022 CS-150 Concepts of Computer Science - M. Edwards 58

