
Concepts of
Computer Science

Data Representation

114/10/2022 CS-150 Concepts of Computer Science - M. Edwards

Chapter Goals

• Lecture 1:

• Data on a finite machine

• Representation of whole numbers

• Representation and arithmetic on negative numbers

• Lecture 2:

• Representing real numbers (floating point)

• Lecture 3:

• Using numbers to represent sound, text and colours

• Issues with compression and storage of data

214/10/2022 CS-150 Concepts of Computer Science - M. Edwards

• Lecture 1:

• Data on a finite machine

• Representation of whole numbers

• Representation and arithmetic on negative numbers

314/10/2022 CS-150 Concepts of Computer Science - M. Edwards

Finite vs. Infinite

• A computer can only process a finite amount of data in finite time.

• How do we represent an infinite world and compute on that
representation?

• We have to represent enough information to satisfy our goals.

• Too little information and the result may not be good enough. Too
much information and the computation may be too expensive.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 4

Analog vs. Digital

• We often need to digitise our analog data

• Sometimes this is okay (converting integers for example), but
sometimes this leads to an approximation of the original:

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 5

Analog Signal Digital Signal

Binary Representations

• If one bit can represent 2 things (0,1)…

• Two bits can represent 4 things (00,01,10,11)…

• Three bits can represent…? (000, 001, 010, 100,…, 111)

• Four bits? Eight bits? Sixty-four bits?

• For each extra bit, the number of things we can represent
doubles. With n bits, we can represent 2n different things…

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 6

How many things

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 7

n 2n

1 2 Two

2 4 Four

3 8 Eight

4 16 Sixteen

8 256 Two Hundred and Fifty Six

16 65536 ~ Sixty Five Thousand

32 4,294,967,296 ~ Four Billion

64 18446744073709551616 ~ Eighteen Quintillion

How many things do we need?

Representing the Natural Numbers

• Simple: Interpret the bit pattern as a binary number.

• 4 bits lets us represent the numbers 0-15:

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 8

Bit Pattern Number Bit Pattern Number

0000 0 1000 8

0001 1 1001 9

0010 2 1010 10

0011 3 1011 11

0100 4 1100 12

0101 5 1101 13

0110 6 1110 14

0111 7 1111 15

Representing Negative Numbers

• First idea: Lets use the first bit to denote whether the number
is positive (0) or negative (1)!

• This is called Sign-Magnitude representation.
• You have a sign bit (the first bit)

• The remaining bits denote the magnitude (or value)

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 9

Why might
this be a
problem?

Sign-Magnitude Representation

• First idea: Lets use the first bit to denote whether the number
is positive (0) or negative (1)!

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 10

Bit Pattern Number Bit Pattern Number

0000 0 1000 -0

0001 1 1001 -1

0010 2 1010 -2

0011 3 1011 -3

0100 4 1100 -4

0101 5 1101 -5

0110 6 1110 -6

0111 7 1111 -7

Representing Negative Numbers

• Revised idea: We’ll still have the first bit denote positive and
negative, but we will let the numbers wrap around.

• Start counting from 0, but when we use up the n-1 positions we
resume counting from greatest magnitude negative number.

• Known as Two’s Complement, or Modulo Arithmetic

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 11

Two’s Complement

• Revised idea: We’ll still have the first bit denote positive and
negative, but we will let the numbers wrap around.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 12

Bit Pattern Number Bit Pattern Number

0000 0 1000 -8

0001 1 1001 -7

0010 2 1010 -6

0011 3 1011 -5

0100 4 1100 -4

0101 5 1101 -3

0110 6 1110 -2

0111 7 1111 -1

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 13

Two’s Complement:
A mapping where the negative values are
mapped to the upper half of the possibly
representable numbers.

To calculate the negative value of a value:

Negative(x) = 2k – x
(in binary we can just use flip and +1)

Ranges with ints of different sizes

• In computing, a range limited (i.e. fixed bit-length) integer is
known as an int.

• Depending on how it is used, we can have signed and
unsigned ints.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 14

Range

Number of Bits Unsigned int (signed) int

8 bits 0 – 255 -128 – 127

16 bits 0 – 65535 -32768 – 32767

32 bits 0 – 4294967295 -2147483648 – 2147483647

64 bits 0 – 18446744073709551615 -9223372036854775808 – 9223372036854775807

Negating a Two’s Complement value

• To get the negative of a number in Two’s Complement, we:
• Invert the bits (i.e. swap 1s for 0s and vice-versa)

• Add 1.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 15

E.g. Negate 5 in 4-bit Two’s Complement

510 = 01012

Invert the bits = 10102

Add 1 to the result = 10112

-510 = 10112

E.g. Negate -2 in 4-bit Two’s Complement

-210 = 11102

Invert the bits = 00012

Add 1 to the result = 00102

210 = 00102

Arithmetic with Two’s Complement

• Addition: add the numbers which represent the number of
interest, and then throw away any carried digits beyond.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 16

2

+ 3

5

0 0 1 0

+ 0 0 1 1

0 1 0 1

Arithmetic with Two’s Complement

• Addition: add the numbers which represent the number of
interest, and then throw away any carried digits beyond.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 17

5

+ -6

-1

0 1 0 1

+ 1 0 1 0

1 1 1 1

Arithmetic with Two’s Complement

• Addition: add the numbers which represent the number of
interest, and then throw away any carried digits beyond.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 18

-3

+ -2

-5

1 1

1 1 0 1

+ 1 1 1 0

1 0 1 1

Arithmetic with Two’s Complement

• Subtraction: Use identity a – b = a + (-b)

• As we know how to negate a value, and we know how to apply
addition, we can now do subtraction easily!

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 19

2

- 3

-1

0 0 1 0

- 0 0 1 1

0 0 1 0

+ 1 1 0 1

1 1 1 1

Arithmetic with Two’s Complement

• Subtraction: Use identity a – b = a + (-b)

Example of 2 – 3:

In 4-bit Two’s Complement: 0010 – 0011

Negate the second number: 0010 + 1101

Add the two together: 1111

Result is: -1

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 20

Integer Overflow

• So far we’ve only discussed calculations where the result is
within the range of numbers that can be represented with our
given scheme.

• What happens if we go beyond this?
• If 4-bit Two’s Complement can represent the range -8 to 7, what

happens if we do 5+5? -5 – 5?

• The result exceeds the representable range of numbers.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 21

Integer Overflow

• Example: 5 + 5 in 4-bit Two’s Complement:

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 22

1 1

0 1 0 1

+ 0 1 0 1

1 0 1 0

• In our 4-bit Two’s Complement scheme, the result here is -6, not 10!

Integer Overflow

• Example: -5 - 5 in 4-bit Two’s Complement:

• Change this to -5 + -5:

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 23

1 1 1

1 0 1 1

+ 1 0 1 1

0 1 1 0

• In our 4-bit Two’s Complement scheme, the result here is 6, not -10!

Integer Overflow

• The problem here is that the value has overflowed beyond our
representable range.

• It doesn’t matter if the value goes too high, or too negative, both
result in “overflow”.

• Programmers must ensure that the result is in range, or they
must handle an overflow error in some other way

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 24

• Lecture 2:

• Representing real numbers (floating point)

2514/10/2022 CS-150 Concepts of Computer Science - M. Edwards

Real Numbers in decimal

• A number with a whole part and a fractional part (either of which
may be zero):

• 17.0

• 3.333333…

• 1.41421356…

• 0.002

• Note that fractional part may be infinite.

• In decimal, positions to the right of the point are tenths,
hundredths, thousandths, etc.: 10-1, 10-2, 10-3…

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 26

Real Numbers in binary

• The same happens in binary.

• Positions to the right of the radix point are:
• Halves (2-1)

• Quarters (2-2)

• Eighths (2-3)

• …

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 27

…
22 21 20 . 2-1 2-2

…
Fours Twos Ones . Halves Quarters

The name of the
“point” is actually the

‘Radix Point’.

We tend to call it a
“decimal point”, but
that’s because we

often work in decimal.

Real Numbers in binary

• To convert the value we can use the calculations we have seen
before, taking into account the new negative positions in the
fractional portion of the number.

• Example:

10.01012 =

= 2 + 0 + 0 + 0.25 + 0 + 0.0625

= 2.312510

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 28

21 20 2-1 2-2 2-3 2-4

1 0 . 0 1 0 1

Floating Point representation

• Now we have a complicated number (whole and fractional part)

• A Real Number can be defined by the formula:

sign ∙ mantissa ∙ baseexponent

• This representation is called floating point, because the radix
point “floats”.

• We will assume that both the mantissa and the exponent fits
within some pre-agreed number of bits.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 29

Floating Point representation

sign ∙ mantissa ∙ baseexponent

Sign: +1 or -1, represented as 0 and 1, respectively. (think back to
Two’s Complement). This is a single bit.

Mantissa: Significant digits of the number being represented. This is
an integer.

Base: Base used. Often pre-determined (binary), so no need to store.

Exponent: Scales our number by shifting the position of the floating
radix point. This is an integer.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 30

Floating Point example

To represent 𝜋 = 3.14159265358979... with a finite number of bits:

Round the number to some number of significant digits, say 3.14159

Rewrite as floating point:

+1 ⋅ 314159 ⋅ 10−5

Represent +1, 314159 and -5 as integers, as in previous slides

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 31

IEEE 754 Standard for Floating Point

• Most current processors follow the IEEE 754 standard for
floating point values:

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 32

IEEE 754 Standard for Floating Point

• There are other standards on number representation. For
example the following gives higher precision floating point
values than the Single Precision on the last slide:

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 33

https://www.geeksforgeeks.org/ieee-standard-754-floating-point-numbers/

https://www.geeksforgeeks.org/ieee-standard-754-floating-point-numbers/

Base conversion with real numbers

• Remember our method for calculating an integer number with
positional notation:

• A similar method holds for the fraction component in a real
number...

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 34

While (value is not zero)
Divide value by the new base
Store remainder
Replace value with the quotient

Read remainders in reverse order

Base conversion with real numbers

• To calculate the value of the fractional part, we now want to
scale up (due to the negative exponent):

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 35

While (value is not zero OR precision is reached)
Multiply value by the new base
Store the whole part
Replace value with the fractional part of the result

Read whole parts in order

Example: Convert 3.62510 to binary:

Therefore: 3.62510 = 11.1012

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 36

Whole part (3), use division
and remainder method:

3 / 2 = 1, remainder: 1
1 / 2 = 0, remainder: 1

Read remainders in reverse: 11

Fractional part (0.625), use multiply
and whole method:

0.625 * 2 = 1, fraction: 0.25
0.25 * 2 = 0, fraction: 0.5
0.5 * 2 = 1, fraction: 0

Read wholes in order: 101

Example: Convert 0.310 to binary:

Therefore: 0.62510 = 0.0100110011…2

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 37

Whole part (0):

0 / 2 = 0, remainder: 0

Read remainders in reverse: 0

Fractional part (0.3):
0.3 * 2 = 0, fraction: 0.6
0.6 * 2 = 1, fraction: 0.2
0.2 * 2 = 0, fraction: 0.4
0.4 * 2 = 0, fraction: 0.8
0.8 * 2 = 1, fraction: 0.6
0.6 * 2 = 1, fraction: 0.2
…

Read wholes in order: 010011…

Scientific notation

A form of floating-point representation in which the decimal point
is kept to the right of the leftmost digit

12001.32708 becomes 1.200132708E+4 in scientific notation
(E+4 is how computers display x104)

What is 123.332 in scientific notation?

What is 0.0034 in scientific notation?

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 38

Representing Text

• Simple Idea:
Assign a binary bit pattern per character you want to represent. Text is
then stored as a sequence of bit patterns.

• Not so simple implementation:
• There are many characters (different alphabets, mathematical symbols,

emojis etc.)

• Some characters are modifications of others: e, è, é, ë

• Direction of the character sequence can matter: Arabic, Hebrew etc.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 39

Character set standards

ASCII (1960’s) 7-bit encoding.

EBCDIC (1960’s) 8-bit encoding.

ISO 8859 (1987) 8-bit encodings.
• ISO 8859-1 also known as Latin-1.

Unicode (1993–) 143,859 characters covering 154 modern and
historic scripts.

• UTF-8
• UTF-16
• UTF-32

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 40

ASCII

• Originally 7 bits, providing 128
unique characters.

• Later extended to use 8 bits.
Now each character is a byte.

• First 32 characters aren’t
normal characters, what do they
do?

• ASCII doesn’t cover advanced
international requirements

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 41

Unicode

• More bits used:
• Commonly: 16 bits

• Sometimes: 8 or 32 bits

• First 256 correspond to
the extended ASCII set

• UTF-16 allows 65536
different characters

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 42

https://en.wikipedia.org/wiki/Emoji#Unicode_blocks

https://en.wikipedia.org/wiki/Emoji#Unicode_blocks

Some Unicode examples

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 43

Character Symbol Hexadecimal value Name

Ä C4 Latin Capital Letter a with Diaeresis

Д 414 Cyrillic Capital Letter De

आ 906 Devanagari Letter Aa

㐮 342E Ideograph: to help; to assist, to achieve, to rise; to
raise

𓀊 1300A Egyptian Hieroglyph A008; rejoice, celebrate, to be
jubilant

😁 1F601 Grinning Face with Smiling Eyes Emoji

Representing colours

• What is colour? Essentially it is an attribute caused by things
reflecting or emitting certain wavelengths of light.

• We perceive colour with photoreceptors in our eyes, these
cells respond to particular wavelengths and our brain interprets
this as a colour.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 44

Representing colours

• One way represent a colour is to encode the intensity of red,
green, and blue (RGB) frequencies:

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 45

Give it a try RGBA Color Picker - https://rgbacolorpicker.com/

https://rgbacolorpicker.com/

RGB colours

• Assuming that we use 8 bits per channel, then we can encode
colours as triples of numbers (red, green, blue) in the range 0-255.

• 0 represents no presence, 255 represents maximum presence.

• Examples:
• (0,255,0) is full green, but no red or blue. This looks green.

• (255,255,255) is full red, green and blue. This looks white .

• (150,75,0) is some red, less green, and no blue. This looks brown.

• Hexadecimal is often used for colours, for example the brown colour
above can be written as #964B00.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 46

Other colour encodings

• Apart from RGB encoded colours there are many other
schemes:

• HSV (hue, saturation, value) and related models.
• CMY (cyan, magenta, yellow).
• CMYK (cyan, magenta, yellow, black). Popular in printing process.

• Colour depth
• Number of bits used to encode colour can vary. 8 bits is standard, but

some situations use more bits. More bits, more colours representable.
• Humans can perceive ~10 million different colours, and 24 bits would

give us the ability to represent over 16.7 million.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 47

Digitized images and graphics

• Need to represent shapes and colours within an image.

• Requires discretization of the observation in 2D space, and in
colour.

• Pixels
• Dots of colour in image (or display device)

• Resolution
• Number of pixels in image (or device)

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 48

Vector vs Raster Graphics

• Raster Graphics
• Treat image as collection of pixels, encoding the colour for each.

• Can be larger in size. Resizing leads to pixelation.

• Most common formats: BMP, GIF, PNG, and JPEG

• Vector Graphics
• Treat image as collection of mathematically defined geometric objects,

in the image. Describing direction, length, thickness.

• Re-sizing is easy, little pixelation.

• Common formats: SVG

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 49

JPEG Images
(Joint Photographic Experts Group)

• JPEG is actually a compression scheme, looking to approximate the
pixel-wise colours within the image.

• It averages colour hues over short distances, lowering the need to
store every single pixel value.

• Why: Human vision tends to blur colours together within small areas,
so no need to be perfect.

• How: Transform from the spatial domain to the frequency domain,
then discard high frequency component. Argh, maths!

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 50

JPEG pixelation

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 51

SVG

• As the circles are mathematically defined, we
can make them larger/smaller and pixelation
does not occur.

• Sometimes the representation of a vector
graphic is smaller in size compared to a
raster version, as not every pixel is stored.

• However, requiring a mathematical definition
for the objects means that it doesn’t work
well for representing natural photographs.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 52

Representing Sound

• Sound is the perception of pressure changes within the air (roughly)

• Convert pressure to digital signal with membrane (speaker / mic)

• Record air pressure on the membrane, sampled at periodic intervals.
This is the sampling frequency

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 53

Analog Signal Digital Signal

Representing Sound

• The frequency at which we sample the air pressure allows us to
more faithfully represent the original continuous frequency.

• Humans can hear up to a frequency of 20 kHz

• We often sample at higher frequencies:
• ~11kHz – AM Radio
• ~44kHz – CD quality
• ~48kHz – DVD quality
• 96kHz – Blu-ray quality

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 54

Digitizing audio in Audition (adobe.com)

https://helpx.adobe.com/audition/using/digitizing-audio.html#:~:text=Digitizing%20audio%201%20Understanding%20sample%20rate%20Sample%20rate,...%204%20Audio%20file%20contents%20and%20size%20

• Lecture 3:

• Issues with compression and storage of data

5514/10/2022 CS-150 Concepts of Computer Science - M. Edwards

Representing data and storing it

• All of the things we’ve discussed so far are represented as
binary values on the machine.

• Some of these representations can be quite large:
• One RGB colour requires us to store 24 bits (8 bits for R, G, and B).

• A High-def image has a resolution of 1920 x 1080, or 2,073,600 pixels.

• That would be just under 50 million bits to store a single picture.

• Works out to roughly 6 mega-bytes.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 56

Data Compression

• Data compression
• Reduction in the amount of space needed to store

a piece of data or the bandwidth to transmit it

• Compression ratio
• The size of the compressed data divided by the

size of the original data

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 57

What does a
small ratio
mean? A

large ratio?

Data Compression

A data compression technique can be:

lossless, which means the data can be retrieved without any loss of
original information

lossy, which means some information may be lost in the process of
compression

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 58

When might you want
one over the other?

Data Compression

• The examples we will use in this lecture will predominantly
focus on text data, however remember that all of this
information is represented on the machine as bit strings.

• This means you should think about how these methods may
apply in other situations (i.e. different types of data rather than
text), and how they may work on the bit string level.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 59

Run-Length Encoding

• In some kinds of files, a single value may be repeated many
times in a long sequence.

• Can you think of any example scenarios?

• Why repeat these values, when we can have them once and
then say how many times to repeat it. We can encode the run
length of the value.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 60

Run-Length Encoding

• Replace the repeated sequence with:
• A flag character (such as * or \)

• The value to repeat

• The number of times to repeat it.

• Only need to do this with a sequence of more than 3 values

• This may not happen to often in natural text, but it could happen
quite often with binary values!

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 61

Why?

Run-Length Encoding

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 62

Keyword Encoding

• Repeating single values may not be very common.

• What about finding frequently used patterns and replacing those
with a single character?

• All we would need is a list of the common patterns and the
single character that they were replaced with.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 63

Keyword Encoding Example

Original message:

“and” is used a lot. If we encode the keyword and by & we get:

The original message has 69 characters and the compressed
has 61 characters. The compression rate is 61/69 = ~0.88

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 64

The shop sells fruit and bread and drinks and clothes and vegetables

The shop sells fruit & bread & drinks & clothes & vegetables.

Keyword Encoding

• To perform encoding and decoding we need the mapping table.
This can often be document or application specific.

• In our previous example, we would need to record that “and” is
replaced with “&” and back.

• Obviously storing this table takes up space too, so this can
affect how effective the compression is. (we’ll ignore this in our
calculations for the moment)

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 65

Variable Length Bit String Encoding

• Remember that these values have an underlying bit string representation:
• Text characters may be Extended ASCII (8 bits) or perhaps UTF-16

• Observation:

The letter ‘e’ is far more common than the letter ‘q’

• Idea:

Can we change the number of bits used to represent a value, making
more frequent values use less bits than uncommon ones?

Values could be represented by variable length bit strings.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 66

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 67

The character “e” in Unicode:

0000000001100101

The character “x” in Unicode:

0000000001111000

The “Pile of Poo” 💩 emoji in Unicode:

11111010010101001
Is this fair?

Variable Length Bit String Encoding

• To allow us to use variable bit-lengths, we need to know where
one encoded value stops and the next begins.

• As long as we can ensure that no encoding is a prefix of
another, then we can encode and decode these values safely.

• How can we ensure that property?

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 68

Huffman Tree

• One way to do this is by constructing a binary tree, and placing
the characters on the leaves.

• The encoding is the path from root to leaf, and this means each
character has a unique path with no other character as a prefix.

• This method is known as the Huffman Tree.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 69

Huffman Tree Algorithm

• Start with the leaves containing the frequencies.

• While more than one node left do
• Combine the two lowest frequency nodes into new subtree.

• Remove those two nodes from consideration.

• Add the root of the subtree with the combined frequency.

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 70

Example

Consider the text to encode:

CABAEACABCDEAEEFCEFF

Analyse the frequencies of each character:

Clearly A and E should have shortest encoding

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 71

Character A B C D E F

Frequency 5 2 4 1 5 3

Example

Method: Build the tree from the bottom up

● Find 2 rows (sub-trees) with lowest frequency and

join

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 72

Character Count

A 5

B 2

C 4

D 1

E 5

F 3

Example

Method: Build the tree from the bottom up

● Find 2 rows (sub-trees) with lowest frequency and

join

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 73

Character Count

A 5

B + D 3

C 4

E 5

F 3

Example

Method: Build the tree from the bottom up

● Find 2 rows (sub-trees) with lowest frequency and

join

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 74

Character Count

A 5

F + (B + D) 6

C 4

E 5

Example

Method: Build the tree from the bottom up

● Find 2 rows (sub-trees) with lowest frequency and

join

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 75

Character Count

A + C 9

F + (B + D) 6

E 5

Example

Method: Build the tree from the bottom up

● Find 2 rows (sub-trees) with lowest frequency and

join

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 76

Character Count

A + C 9

E+ (F + (B + D)) 11

Example

Method: Build the tree from the bottom up

● Find 2 rows (sub-trees) with lowest frequency and

join

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 77

Character Count

(A + C) + (E+ (F + (B + D))) 20

Example

Method:

● Now label left branches with 0 and right branches with 1

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 78

Character Count

(A + C) + (E+ (F + (B + D))) 20

Example

Method:

● Path from root to leaf gives bit string encoding for a given

character

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 79

Character Count

(A + C) + (E+ (F + (B + D))) 20

Example

Method:

● Generate the encoded message by reading left to right,

replacing the character with its mapped bit-string:

CABAEACABCDEAEEFCEFF

becomes

0100111000100001001110011111100010101100110110110

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 80

Variable vs Fixed Length

• The encoded message may look longer than the original.

• But remember that each character in the original message was
represented with a fixed-length bit string.

• E.g. If it was Extended-ASCII then it was 8 bits per character. Now it is
less than 5 per character.

• The original message has 20 * 8 bits and the compressed has
49 bits. The compression rate is 49/160 = ~0.30 ☺

• Even better if it was in UTF-16: 49/320 = ~0.15!

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 81

Example

Decode:

● Read from left to right, checking for matches

● Swap match with mapped character

● Resume reading

0100111000100001001110011111100010101100110110110

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 82

Example

Decode:

● Read from left to right, checking for matches

● Swap match with mapped character

● Resume reading

0100111000100001001110011111100010101100110110110

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 83

Example

Decode:

● Read from left to right, checking for matches

● Swap match with mapped character

● Resume reading

0100111000100001001110011111100010101100110110110

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 84

Example

Decode:

● Read from left to right, checking for matches

● Swap match with mapped character

● Resume reading

C00111000100001001110011111100010101100110110110

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 85

Example

Decode:

● Read from left to right, checking for matches

● Swap match with mapped character

● Resume reading

C00111000100001001110011111100010101100110110110

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 86

Example

Decode:

● Read from left to right, checking for matches

● Swap match with mapped character

● Resume reading

C00111000100001001110011111100010101100110110110

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 87

Example

Decode:

● Read from left to right, checking for matches

● Swap match with mapped character

● Resume reading

CA111000100001001110011111100010101100110110110

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 88

Example

Decode:

● Read from left to right, checking for matches

● Swap match with mapped character

● Resume reading

CA111000100001001110011111100010101100110110110

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 89

Example

Decode:

● Read from left to right, checking for matches

● Swap match with mapped character

● Resume reading

CA111000100001001110011111100010101100110110110

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 90

Example

Decode:

● Read from left to right, checking for matches

● Swap match with mapped character

● Resume reading

CA111000100001001110011111100010101100110110110

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 91

Example

Decode:

● Read from left to right, checking for matches

● Swap match with mapped character

● Resume reading

CA111000100001001110011111100010101100110110110

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 92

Example

Decode:

● Read from left to right, checking for matches

● Swap match with mapped character

● Resume reading

CAB00100001001110011111100010101100110110110

14/10/2022 CS-150 Concepts of Computer Science - M. Edwards 93

