Concepts of
Computer Science

Number Systems

Chapter Goals

e Lecture 1:

« Categories of numbers and positional notation
« Converting numbers between bases
« Relation between bases 2, 8, and 16

e Lecture 2:

 Arithmetic in binary
« Importance of binary in computing

—_— /,M/—(

e —

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards

* N

—

umber Systems, Lecture 1:
« Categories of numbers
« Converting numbers between bases

* Relation between bases 2, 8, and 16

/////

e —

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards

Numbers

= /’///

04/10/2022

CS-150 Concepts of Computer Science - M. Edwards

Numbers
* Different categories of numbers

* Natural Numbers N:
* The counting numbers achieved by adding 1
«{1,2,3,4,...}

* Whole Numbers W:
* The natural numbers AND zero
 Also called non-negative integers
«{0,1,2,3,4, ...}

Natural
Numbers

This classification can
cause arguments

amongst
mathematicians

——— /’:_v_:-—-—-—//—/’%

e —————

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards

Numbers

* Integers Z:

 The Whole Numbers and negative Natural
Numbers

e {...,-4,-3,-2,-1,0,1,2,3,4, ...}

« Rational Numbers Q:

* Integer, or a quotient of an integer and a non-zero
integer.

* {Integers, 3/8, -5.28, ...}

* Real Numbers R:
 All “non-imaginary” numbers

Natural
Numbers

A_ /ﬂ/—%

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards

Writing numbers

« When writing a number we use digits: {0, 1, 2, 3, ..., 9}

* The number of digits available to us defines the base of the number
we are representing:

Base 2. {0, 1} (binary)
Base 3: {0, 1, 2}

Base 8: {0, 1,2,3,4,65,6,7
Base 9: {0,1,2,3,4,5,6,7
Base 10:{0, 1, 2, 3,4,5,6, 7

éése 16:{0,1, 2,3,4,5,6,7,8,9,A, B, C, D, E, F} (hexadecimal)
Base 2311:{0, 1, ..., 9,A, B, ..., Z, ..., @, &,]} (I just made this up)

——_——__——-

Sexagesimal (base 60)

{f 11
{fy 12
4y 13
{@ 14
W@ 15
W% 16
{(&F 17
{8 18
W¥F 19
« 20

Y 31
«y 32
«ny 33
€@ 34
KW 35
KR 36
«KEF 37
KT 35
«F 39
« 40

Image: Josell7 - File:Babylonian_numerals.jpg, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=9862983

———

04/10/2022

e —

/////

CS-150 Concepts of Computer Science - M. Edwards

Writing numbers

« To avoid ambiguity, we can state the base a number is In.
Is “357" in base 87 base 10? base 167
 We write number in brackets (sometimes) and include the base In
subscript:

(101100101), = (357)4 = (239),, = (165),4

P

— ol - =

————

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 9

Common bases and their digits

Binary (base 2).

 Digits: 0,1
Why might these be
Octal (base 8): Y Coimon?
 Digits: 0,1,2,3,4,5,6,7 '
Decimal (base 10): We’ll come back to
- Digits: 0,1,2,3,4,5,6,7,8,9 some of them later

Hexadecimal (base 16):
- Digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

S ____—— o —

— =

s

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards

10

Writing bigger numbers

* If we have only 10 digits, how do we write larger decimal
numbers?

* In decimal, for any number greater than 9, we need to use
multiple digits...

* We use positions to modify what that digit represents:

This is really 3

hundreds, 5 tens,
and 7 ones...

—

S —

R

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 11

Positional Notation

Positional Notation

(more in pre-reading material)

* Represent a number by digits in positions, indexed from the
rightmost position.

* [ncrease In position results In increase in magnitude:

Units 10° = 1 The superscript
Tens 101 = 10 here denotes the
Decimal , position
example: Hundreds 10 = 100
Thousands 103 = 1000

e

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 13

Positional Notation

(more in pre-reading material)

 To get our value, we multiply the digit at a position by the base
raised to the power of it's position:

* E.g. In decimal (base 10):
357=3-10°+5-10t+7-10°

* General form, in base 10, an n digit number Is represented as:

Generalisation to other bases

(more in pre-reading material)

* A base Is a representation scheme that describes the available
number of unigue symbols available to represent numbers.

* In decimal (base 10) we have 10 unique symbols: {0,1,2,...,9}
* In octal (base 8) we have 8 unique symbols: {0,1,2,...,7}

* The general form of positional notation for base b:
d....d,ddy=d ,-b™+ .. +d,-b?+d,-bt+d,b°

P

— ol - =

e —

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 15

converting between bases

Convert from base b to decimal

« Use general formula as we saw a moment ago...
 Convert d. to decimal and multiply it by b', then sum the results:

(357)3=3:82+5-81+7-8°
=3:64+5-8+7-1
=192+40+7
= (239)19

P

— ol - =

e —

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards

17

Convert from base b to decimal

« Use general formula as we did for positional notation:
 Convert d. to decimal and multiply it by b', then sum the results:

(AE4), =A-162+E - 161 + 4 - 16°
=A-256+E-16+4-1
il = 10 - 256 + 14 - 16+4 -1
= 2560 + 224 + 4
= (2788),,

Note here that the

—

— —— =

R

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards

18

Convert from decimal to base b

 Algorithm (convert decimal integer to base b):

* While number is not zero
» Divide number by new base b
* Note down remainder
* Replace number by quotient

* The remainders listed in reverse order Is the value in base b.

* What is happening here?

e ——-——._._________.

e —

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 19

Convert from decimal to base b

example 1

Convert (239),,to base 8:

(239),,/ 8 = 29 remainder 7
29 /8 = 3, remainder 5
3/8 =0, remainder 3

= (357)s

— _

e —

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards

20

Convert from decimal to base b

example 2

Convert (239),,to base 16:

(239),,/ 16 = 14 remainder 15 (F)
14 /16 =0, remainder 14 (E)
= (EF) 4

— e

R

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards

21

Convert from base x to base y

 Actually the same algorithm as with decimal:

* While number is not zero
« Divide number by new base b
* Note down remainder
* Replace number by quotient

* Read remainders in reverse

* However now we are doing division in base X.

« Can be significantly more difficult if we are not careful...

————

Convert from base x to base y

example 3

Convert (A6C),, to base (12),, (actually base (C),,):

(A6C),, / C = C3 remainder 4 Why?
C3/C-= 10, remainder 3 Note that these numbers are
10/ C =1, remainder 2 all ase 14
1/C= 0, remainder 1 How’s your long division in
— (1234)12 base 14?

Requires thinking in bases which aren't intuitive to us.

Instead we usually just convert base x to decimal, and then convert
from decimal to base .

S —
e —

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 23

Cheats approach to convert between
bases of power 2

e Octal: (1001001101111),
« Starting from the right, group digits into 1| 001 | o001 | 101 | 111
groups of 3. 1| 1 1 5 7
- Convert group by group to octal. (11157),

Why does this

work?

« Hexadecimal:

. _ o _ (1001001101111),

« Starting from the right, group digits into 11 0010 0110 1111
groups of 4. 1 2 6 F

« Convert group by group to hexadecimal. (126F),

—_— — S

R

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 24

e | ecture 2:

—

 Arithmetic in binary
 Importance of binary in computing

» Looking ahead to using number representations

———

— e

e —

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards

25

Binary Addition

—_— __———

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards

26

Binary arithmetic - Addition

(more in pre-reading material)

Binary Addition Table

 Arithmetic can be done directly on + 0 1

binary numbers as long as we 0 0 1

remember the suitable addition . . 10
and multiplication tables.

Binary Multiplication Table

* |n particular we must remember 0 .

that 1 + 1 = 10 In binary. This gives
a carry. 0 0 0

e —

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 27

Binary arithmetic - Addition

(more in pre-reading material)

« Example:
871,
+ 79,
& //_—(

e —

04/10/2022

CS-150 Concepts of Computer Science - M. Edwards

28

Binary arithmetic - Addition

(more in pre-reading material)

« Example:

1010111
+ 1001011

Binary arithmetic - Addition

(more in pre-reading material)
1010111 -M

+ 1001011

« Example:

Binary arithmetic - Addition

(more in pre-reading material)
1010111 -M

+ 1001011
10

« Example:

Binary arithmetic - Addition

(more in pre-reading material)

« Example:
1010111 .M
+ 1001011
010

Binary arithmetic - Addition

(more in pre-reading material)

« Example:
1010111
+ 1001011
0010

Binary arithmetic - Addition

(more in pre-reading material)

« Example:
1010111
+ 1001011
00010

Binary arithmetic - Addition

(more in pre-reading material)

« Example:
1010111
+ 1001011
100010

Binary arithmetic - Addition

(more in pre-reading material)

« Example:
1010111
+ 1001011
0100010

Binary arithmetic - Addition

(more in pre-reading material)

« Example:
1010111
+ 1001011
10100010

Binary Subtraction

Binary arithmetic - Subtraction

(more in pre-reading material)

For subtraction we have a concept of “borrowing” from a
higher position.

871
59,

Binary arithmetic - Subtraction

(more in pre-reading material)

For subtraction we have a concept of “borrowing” from a
higher position.

— ___——— - =

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 40

Binary arithmetic - Subtraction

(more in pre-reading material)

For subtraction we have a concept of “borrowing” from a
higher position.

— ___——— - =

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 41

Binary arithmetic - Subtraction

(more in pre-reading material)

For subtraction we have a concept of “borrowing” from a
higher position.

— ___——— - =

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 42

Binary arithmetic - Subtraction

(more in pre-reading material)

For subtraction we have a concept of “borrowing” from a

hlgher posmon. Cannot subtract 1 from 0.
Need to borrow from

next position

-
= O

B I o Y S
Ol
Ol

S —
R

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 43

Binary arithmetic - Subtraction

(more in pre-reading material)

For subtraction we have a concept of “borrowing” from a

higher position.
J P Thisisnow 10-1
(in binary)

&_‘ /’/

R

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 44

Binary arithmetic - Subtraction

(more in pre-reading material)

For subtraction we have a concept of “borrowing” from a

higher position. ﬂ

But there is nothing to
borrow from here. 10

Cannot subtract 1 from O.
Need to borrow from
next position

So we need to go to the 1
next position to borrow. 1

— 4%

— =

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 45

Binary arithmetic - Subtraction

(more in pre-reading material)

For subtraction we have a concept of “borrowing” from a
higher position.

10 210 1 1 1
- 1 1 1 0 1 1
1 1 0 O

— ol - =

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 46

Binary arithmetic - Subtraction

(more in pre-reading material)

For subtraction we have a concept of “borrowing” from a

higher position.
J P Thisisnow 10-1
(in binary)

&_‘ /’/

R

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 47

Binary arithmetic - Subtraction

(more in pre-reading material)

For subtraction we have a concept of “borrowing” from a
higher position.

— ol - =

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 48

Binary arithmetic - Subtraction

(more in pre-reading material)

For subtraction we have a concept of “borrowing” from a
higher position.

— ol - =

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 49

Binary arithmetic - Subtraction

(more in pre-reading material)

For subtraction we have a concept of “borrowing” from a
higher position.

0 1%
1 9 12 10 1 1 1
These two “leading 0 1 1
zeros” are not needed,
so can be discarded. 1 0 O = 2810
— I

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards 50

Binary arithmetic - Multiplication

For multiplication, we multiply one of the numbers by
each digit in the other number, and then sum them

together.
1 0 1

1 0 1 1

Binary arithmetic - Multiplication

Binary arithmetic - Multiplication

-
= O [
ol |O
=

Binary arithmetic - Multiplication

Ok | O |k
= | O || |O

Binary arithmetic - Multiplication

O O |k |IOoO||IF

Binary arithmetic - Multiplication

oNNoNE NeR

Binary arithmetic - Multiplication

Sum up these

intermediate values

— 4%

— =

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards

57

Binary arithmetic - Multiplication

Binary arithmetic - Multiplication

O O |

R OO
O O

1
1 1 1 1

— S ——

e —

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards

59

Why does all this matter?

04/10/2022 CS-150 Concepts of Computer Science - M. Edwards

Why do we want this?

 Development of computers as we know them today required the
ability to store and manipulate information.

* Being able to reliably do this is key to the success of modern
computers, and developing hardware to do this is tricky.

* It's much easier to differentiate two levels of electrical voltage (off vs
on), which makes the binary system so attractive

« Often we treat low voltage as 0, and high voltage as 1.

Why do we want this?

* We call a single binary value a “bit” or “binary digit”

* We then group bits together into a “byte”, which often refers to
8 bits

* We often use some multiple of 8 bits to represent data in our
machine, and modern computers are designed to carry out
instructions on this. We call this a “word”. The “word size” of
the computer defines the maximum number of bits the
processor can operate on at a time.

Representation

* You may have noticed that all the numbers we have discussed
so far have been Whole Numbers {0, 1, 2, 3, ...}

 What about ...

* Negative numbers
 Floating Point numbers

* These have special properties (a sign, a fractional part etc.)
which we would want to represent

Representation

« Data can be quite complex, but we can utilise binary bits to
build up a representation of these complex things from the
atomic Os and 1s.

* As long as we can agree on how to convert a collection of Os
and 1s to our “thing”, and vice-versa, then we can represent it
on the machine and utilise it for computation.

* In the next session we will look at representation of data.

Why do we want this?

* \We can go even further than representing the categories of numbers
discussed eatrlier.

* We will use numbers to represent many different things:
« Characters
e Colors
« Shapes
« Objects

Have a think between now and then. How would you represent these
things if all you have is binary?

I— —_—

————

