Concepts of Computer Science

Number Systems

Chapter Goals

- Lecture 1:
- Categories of numbers and positional notation
- Converting numbers between bases
- Relation between bases 2, 8, and 16
- Lecture 2:
- Arithmetic in binary
- Importance of binary in computing
- Number Systems, Lecture 1:
- Categories of numbers
- Converting numbers between bases
- Relation between bases 2, 8, and 16

Numbers

Numbers

- Different categories of numbers
- Natural Numbers \mathbb{N} :
- The counting numbers achieved by adding 1
- $\{1,2,3,4, \ldots\}$
- Whole Numbers \mathbb{W} :
- The natural numbers AND zero
- Also called non-negative integers

This classification can cause arguments amongst
mathematicians

- $\{0,1,2,3,4, \ldots\}$

Numbers

- Integers \mathbb{Z} :
- The Whole Numbers and negative Natural Numbers
- $\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$

Real Numbers

- Rational Numbers \mathbb{Q} :
- Integer, or a quotient of an integer and a non-zero integer.
- $\{$ Integers, $3 / 8,-5.28, \ldots\}$
- Real Numbers \mathbb{R} :
- All "non-imaginary" numbers

Writing numbers

- When writing a number we use digits: $\{0,1,2,3, \ldots, 9\}$
- The number of digits available to us defines the base of the number we are representing:
- Base 2: $\{0,1\}$ (binary)
- Base 3: \{0, 1, 2\}
- ...
- Base 8: $\{0,1,2,3,4,5,6,7\}$
- Base 9: $\{0,1,2,3,4,5,6,7,8\}$
- Base 10: $\{0,1,2,3,4,5,6,7,8,9\}$ (decimal)
- ...
- Base 16: $\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$ (hexadecimal)
- Base 2311: $\{0,1, \ldots, 9, A, B, \ldots, Z, \ldots$, (2), 䕄, 骨\} (I just made this up)

Sexagesimal（base 60）

91	＜7 11	《4 21	栚7 31	隹\％ 41	《䇝》 51	
972	＜PY 12	\＄4PY 22	4＊979 32	－489 42	《先9752	
971	SYPY 13	STYYP 23	4－4PTP 33		整9717 53	
${ }^{\text {P1／}} 4$	俱 14	隹过 24	出罗 34	等困44	陁䍛54	
留 5	㑡15	隹为 25	出稆 35	陁留 45	先欹55	Why？
楽 6	偘 16	《第 26	出缐 36	然哭46	先楽56	
7	你 17	隹㷅 27	贸知 37	等㷅 47	先㷅 57	
	倪 18			俈聂 48		
器9	嬹 19	隹咖 29	出發 39	俈舞 49	陁器 59	
＜10	＜4 20	\＆－4 30	4 40	然 50		

[^0]
Writing numbers

- To avoid ambiguity, we can state the base a number is in.

Is " 357 " in base 8 ? base 10 ? base $16 ?$

- We write number in brackets (sometimes) and include the base in subscript:

$$
(101100101)_{2}=(357)_{8}=(239)_{10}=(165)_{16}
$$

Common bases and their digits

Binary (base 2):

- Digits: 0,1

Octal (base 8):

- Digits: 0,1,2,3,4,5,6,7

Decimal (base 10):

- Digits: 0,1,2,3,4,5,6,7,8,9

```
Why might these be common?
We'll come back to some of them later
```

Hexadecimal (base 16):

- Digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Writing bigger numbers

- If we have only 10 digits, how do we write larger decimal numbers?
- In decimal, for any number greater than 9 , we need to use multiple digits...
- We use positions to modify what that digit represents:

357
This is really 3
hundreds, 5 tens, and 7 ones...

Positional Notation

Positional Notation

(more in pre-reading material)

- Represent a number by digits in positions, indexed from the rightmost position.
- Increase in position results in increase in magnitude:

Decimal example:	\checkmark				The superscript here denotes the position
	Units	10^{0}	$=$	1	
	Tens	10^{1}	=	10	
	Hundreds	10^{2}	=	100	
	Thousands	10^{3}	$=$	000	

Positional Notation

(more in pre-reading material)

- To get our value, we multiply the digit at a position by the base raised to the power of it's position:
- E.g. in decimal (base 10):

$$
357=3 \cdot 10^{2}+5 \cdot 10^{1}+7 \cdot 10^{0}
$$

- General form, in base 10, an n digit number is represented as:

$$
d_{n-1} \ldots d_{2} d_{1} d_{0}=d_{n-1} \cdot 10^{n-1}+\ldots+d_{2} \cdot 10^{2}+d_{1} \cdot 10^{1}+d_{0} \cdot 10^{0}
$$

Generalisation to other bases

(more in pre-reading material)

- A base is a representation scheme that describes the available number of unique symbols available to represent numbers.
- In decimal (base 10) we have 10 unique symbols: $\{0,1,2, \ldots, 9\}$
- In octal (base 8) we have 8 unique symbols: $\{0,1,2, \ldots, 7\}$
- The general form of positional notation for base b :

$$
d_{n-1} \ldots d_{2} d_{1} d_{0}=d_{n-1} \cdot b^{n-1}+\ldots+d_{2} \cdot b^{2}+d_{1} \cdot b^{1}+d_{0} \cdot b^{0}
$$

Converting between bases

Convert from base b to decimal

- Use general formula as we saw a moment ago...
- Convert d_{i} to decimal and multiply it by b^{i}, then sum the results:

$$
\begin{aligned}
(357)_{8} & =3 \cdot 8^{2}+5 \cdot 8^{1}+7 \cdot 8^{0} \\
& =3 \cdot 64+5 \cdot 8+7 \cdot 1 \\
& =192+40+7 \\
& =(239)_{10}
\end{aligned}
$$

Convert from base b to decimal

- Use general formula as we did for positional notation:
- Convert d_{i} to decimal and multiply it by b^{i}, then sum the results:

$$
(\mathrm{AE} 4)_{16}=\mathrm{A} \cdot 16^{2}+\mathrm{E} \cdot 16^{1}+4 \cdot 16^{0}
$$

Note here that the
$=A \cdot 256+E \cdot 16+4 \cdot 1$
hexadecimal "A" is equivalent
$=10 \cdot 256+14 \cdot 16+4 \cdot 1$
$=2560+224+4$
$=(2788)_{10}$

Convert from decimal to base b

- Algorithm (convert decimal integer to base b):
- While number is not zero
- Divide number by new base b
- Note down remainder
- Replace number by quotient
- The remainders listed in reverse order is the value in base b.
- What is happening here?

Convert from decimal to base b

example 1
Convert (239) ${ }_{10}$ to base 8:
$(239)_{10} / 8=29$ remainder 7

$$
\begin{aligned}
29 / 8 & =3, \text { remainder } 5 \\
3 / 8 & =0, \text { remainder } 3 \\
& =(357)_{8}
\end{aligned}
$$

Convert from decimal to base b

example 2
Convert (239) ${ }_{10}$ to base 16:

$$
\begin{aligned}
(239)_{10} / 16 & =14 \text { remainder } 15(F) \\
14 / 16 & =0, \text { remainder } 14(E) \\
& =(E F)_{16}
\end{aligned}
$$

Convert from base x to base y

- Actually the same algorithm as with decimal:
- While number is not zero
- Divide number by new base b
- Note down remainder
- Replace number by quotient
- Read remainders in reverse
- However now we are doing division in base x.
- Can be significantly more difficult if we are not careful...

Convert from base x to base y

example 3
Convert (A6C) $)_{14}$ to base (12) $)_{10}$ (actually base (C) $)_{14}$):

$$
\begin{aligned}
(\mathrm{A} 6 \mathrm{C})_{14} / \mathrm{C} & =\mathrm{C} 3 \text { remainder } 4 \\
\mathrm{C} 3 / \mathrm{C} & =10, \text { remainder } 3 \\
10 / \mathrm{C} & =1, \text { remainder } 2 \\
1 / \mathrm{C} & =0, \text { remainder } 1 \\
& =(1234)_{12}
\end{aligned}
$$

Why?
Note that these numbers are
all base 14!
How's your long division in
base 14?

Requires thinking in bases which aren't intuitive to us.
Instead we usually just convert base x to decimal, and then convert from decimal to base y.

Cheats approach to convert between bases of power 2

- Octal:
- Starting from the right, group digits into groups of 3.
- Convert group by group to octal.

Why does this
work?

- Hexadecimal:
- Starting from the right, group digits into groups of 4.
- Convert group by group to hexadecimal.

$(1001001101111)_{2}$			
1	0010	0110	1111
1	2	6	F
$(126 \mathrm{~F})_{16}$			

- Lecture 2 :
- Arithmetic in binary
- Importance of binary in computing
- Looking ahead to using number representations

Binary Addition

Binary arithmetic - Addition

(more in pre-reading material)

- Arithmetic can be done directly on binary numbers as long as we remember the suitable addition and multiplication tables.
- In particular we must remember that $\mathbf{1 + 1} \mathbf{= 1 0}$ in binary. This gives a carry.

Binary Multiplication Table

\cdot	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	0
$\mathbf{1}$	0	1

Binary arithmetic - Addition

(more in pre-reading material)

- Example:

87_{10}
\(\begin{array}{r}+7510
\hline\end{array}\)

Binary arithmetic - Addition

(more in pre-reading material)

- Example:

$$
\begin{array}{r}
1010111 \\
+1001011 \\
\hline
\end{array}
$$

Binary arithmetic - Addition

(more in pre-reading material)

- Example:

Binary arithmetic - Addition

(more in pre-reading material)

- Example:

Binary arithmetic - Addition

(more in pre-reading material)

- Example:

Binary arithmetic - Addition

(more in pre-reading material)

- Example:

Binary arithmetic - Addition

(more in pre-reading material)

- Example:

Binary arithmetic - Addition

(more in pre-reading material)

- Example:

Binary arithmetic - Addition

(more in pre-reading material)

- Example:

Binary arithmetic - Addition

(more in pre-reading material)

- Example:

Binary Subtraction

Binary arithmetic - Subtraction

(more in pre-reading material)
For subtraction we have a concept of "borrowing" from a higher position.

$$
\begin{array}{r}
87_{10} \\
-\quad 59_{10} \\
\hline
\end{array}
$$

Binary arithmetic - Subtraction

(more in pre-reading material)
For subtraction we have a concept of "borrowing" from a higher position.

$$
\begin{array}{rrrrrrr}
10 & 1 & 0 & 1 & 1 & 1 \\
- & 1 & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{array}
$$

Binary arithmetic - Subtraction

(more in pre-reading material)
For subtraction we have a concept of "borrowing" from a higher position.

1	0	1	0	1	1	1
-	1	1	1	0	1	1

Binary arithmetic - Subtraction

(more in pre-reading material)
For subtraction we have a concept of "borrowing" from a higher position.

1	0	1	0	1	1	1
-	1	1	1	0	1	1

Binary arithmetic - Subtraction

(more in pre-reading material)
For subtraction we have a concept of "borrowing" from a higher position.

Cannot subtract 1 from 0. Need to borrow from next position

1	0	1	0	1	1	1
-	1	1	1	0	1	1
				1	0	0

Binary arithmetic - Subtraction

(more in pre-reading material)
For subtraction we have a concept of "borrowing" from a higher position.

10	$7^{1} 0$	1	1	1		
-	1	1	1	0	1	1
			1	0	0	

Binary arithmetic - Subtraction

(more in pre-reading material)
For subtraction we have a concept of "borrowing" from a higher position.

But there is nothing to borrow from here.

So we need to go to the next position to borrow.

$$
\begin{array}{rrrrrrr}
1 & 0 & 1^{1} 0 & 1 & 1 & 1 \\
& 1 & 1 & 1 & 0 & 1 & 1 \\
\hline & & & 1 & 1 & 0 & 0
\end{array}
$$

Binary arithmetic - Subtraction

(more in pre-reading material)
For subtraction we have a concept of "borrowing" from a higher position.

0		0				
Ψ^{1}	0	7^{1}	0	1	1	1
	1	1	1	0	1	1
				1	1	0

Binary arithmetic - Subtraction

(more in pre-reading material)
For subtraction we have a concept of "borrowing" from a higher position.

$$
\begin{array}{rrrrrr}
\mathbb{1}^{7} \theta & \mathbf{1}^{1} 0 & 1 & 1 & 1 \\
- & 1 & 1 & 1 & 0 & 1 \\
\hline
\end{array}
$$

Binary arithmetic - Subtraction

(more in pre-reading material)
For subtraction we have a concept of "borrowing" from a higher position.

Binary arithmetic - Subtraction

(more in pre-reading material)
For subtraction we have a concept of "borrowing" from a higher position.

0	1	10				
4						
	θ	1	10	1	1	1
-	1	1	1	0	1	1
	0	1	1	1	0	0

Binary arithmetic - Subtraction

(more in pre-reading material)
For subtraction we have a concept of "borrowing" from a higher position.

These two "leading zeros" are not needed, so can be discarded.

$$
\begin{array}{rrrrrrr}
0 & 1 & { }^{1} 0 & & & & \\
& & { }^{7} \theta & 1 & { }^{1} 0 & 1 & 1 \\
1 \\
& 1 & 1 & 1 & 0 & 1 & 1 \\
\hline 0 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}=28_{10}
$$

Binary arithmetic - Multiplication

For multiplication, we multiply one of the numbers by each digit in the other number, and then sum them together.

$$
\begin{array}{llll}
& 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}
$$

Binary arithmetic - Multiplication

	1	0	1
1	0	1	1

Binary arithmetic - Multiplication

1	0	1	
1	0	1	1
	1	0	1

Binary arithmetic - Multiplication

	1	0	1
1	0	1	1
	1	0	1
1	0	1	

Binary arithmetic - Multiplication

Binary arithmetic - Multiplication

:---
1

Binary arithmetic - Multiplication

Binary arithmetic - Multiplication

Binary arithmetic - Multiplication

Why does all this matter?

Why do we want this?

- Development of computers as we know them today required the ability to store and manipulate information.
- Being able to reliably do this is key to the success of modern computers, and developing hardware to do this is tricky.
- It's much easier to differentiate two levels of electrical voltage (off vs on), which makes the binary system so attractive
- Often we treat low voltage as 0 , and high voltage as 1 .

Why do we want this?

- We call a single binary value a "bit" or "binary digit"
- We then group bits together into a "byte", which often refers to 8 bits
- We often use some multiple of 8 bits to represent data in our machine, and modern computers are designed to carry out instructions on this. We call this a "word". The "word size" of the computer defines the maximum number of bits the processor can operate on at a time.

Representation

- You may have noticed that all the numbers we have discussed so far have been Whole Numbers $\{0,1,2,3, \ldots\}$
- What about ...
- Negative numbers
- Floating Point numbers
- These have special properties (a sign, a fractional part etc.) which we would want to represent

Representation

- Data can be quite complex, but we can utilise binary bits to build up a representation of these complex things from the atomic 0 s and 1 s .
- As long as we can agree on how to convert a collection of 0s and 1 s to our "thing", and vice-versa, then we can represent it on the machine and utilise it for computation.
- In the next session we will look at representation of data.

Why do we want this?

- We can go even further than representing the categories of numbers discussed earlier.
- We will use numbers to represent many different things:
- Characters
- Colors
- Shapes
- Objects
- ...

Have a think between now and then. How would you represent these things if all you have is binary?

[^0]: Image：Josell7－File：Babylonian＿numerals．jpg，CC BY－SA 4．0，https：／／commons．wikimedia．org／w／index．php？curid＝9862983

