
1 Binary systems and hexadecimal
In this chapter you will learn about:
• the binary system
• measurement of computer memories
• the hexadecimal system
• how to convert numbers between different number base systems

1.1 Introduction
As you progress through this book you will begin to realise how complex computer
systems really are. By the time you reach Chapter 12 you should have a better
understanding of the fundamentals behind computers themselves and the software that
controls them.

However, no matter how complex the system, the basic building block in all
computers is the binary number system. This system is chosen since it consists of 1s
and 0s only. Since computers contain millions and millions of tiny ‘switches’, which
must be in the ON or OFF position, this lends itself logically to the binary system. A
switch in the ON position can be represented by 1; a switch in the OFF position can
be represented by 0.

1.2 The binary system
We are all familiar with the denary (base 10) number system which counts in
multiples of 10. This gives us the well-known headings of units, 10s, 100s, 1000s
and so on:

The BINARY SYSTEM is based on the number 2. Thus, only the two ‘values’ 0 and 1
can be used in this system to represent each digit. Using the same method as denary,
this gives the headings of 20, 21, 22, 23 and so on. The typical headings for a binary
number with eight digits would be:

A typical binary number would be:
1 1 1 0 1 1 1 0

12

housardd
Highlight

housardd
Highlight

housardd
Highlight

housardd
Highlight

housardd
Highlight

housardd
Highlight

1.2.1 Converting from binary to denary
It is fairly straightforward to change a binary number into a denary number. Each time
a 1 appears in a column, the column value is added to the total. For example, the
binary number above is:

128 + 64 + 32 + 8 + 4 + 2 = 238 (denary)
The 0 values are simply ignored.

Activity 1.1
Convert the following binary numbers into denary:
a 0 0 1 1 0 0 1 1
b 0 1 1 1 1 1 1 1
c 1 0 0 1 1 0 0 1
d 0 1 1 1 0 1 0 0
e 1 1 1 1 1 1 1 1
f 0 0 0 0 1 1 1 1
g 1 0 0 0 1 1 1 1
h 1 1 1 1 0 0 0 0
i 0 1 1 1 0 0 0 0
j 1 1 1 0 1 1 1 0

1.2.2 Converting from denary to binary
The reverse operation, converting from denary to binary, is slightly more complex.
There are two basic ways of doing this. The first method is ‘trial and error’ and the
second method is more methodical and involves repetitive division.

Method 1
Consider the conversion of the denary number, 107, into binary. This method
involves placing 1s in the appropriate position so that the total equates to 107:

Method 2
This method involves successive division by 2. The remainders are then read from
BOTTOM to TOP to give the binary value. Again using 107, we get:

13

housardd
Highlight

housardd
Highlight

housardd
Highlight

housardd
Highlight

Figure 1.1

Activity 1.2
Convert the following denary numbers into binary (using both methods):
a 4 1
b 6 7
c 8 6
d 1 0 0
e 1 1 1
f 1 2 7
g 1 4 4
h 1 8 9
i 2 0 0
j 2 5 5

1.3 Measurement of the size of computer
memories
A binary digit is commonly referred to as a BIT; 8 bits are usually referred to as a
BYTE.

The byte is the smallest unit of memory in a computer. Some computers use larger
bytes but they are always multiples of 8 (e.g. 16-bit systems and 32-bit systems). One
byte of memory wouldn’t allow you to store very much information; therefore
memory size is measured in the following multiples:

Table 1.1

Name of memory size Number of bits Equivalent denary value
1 kilobyte (1 KB) 210 1 024 bytes

14

1 megabyte (1 MB) 220 1 048 576 bytes
1 gigabyte (1 GB) 230 1 073 741 824 bytes
1 terabyte (1 TB) 240 1 099 511 627 776 bytes
1 petabyte (1 PB) 250 1 125 899 906 842 624 bytes

(Note: 1024 × 1024 = 1048576 and so on.)
To give some idea of the scale of these numbers, a typical data transfer rate using

the internet is 32 megabits (i.e. 4 MB) per second (so a 40 MB file would take 10
seconds to transfer). Most hard disk systems in computers are 1 or 2 TB in size (so a
2 TB memory could store over half a million 4 MB photos, for example).

It should be pointed out here that there is some confusion in the naming of memory
sizes. The IEC convention is now adopted by some organisations. Manufacturers of
storage devices often use the denary system to measure storage size. For example,

1 kilobyte = 1000 byte
1 megabyte = 1000000 bytes
1 gigabyte = 1000000000 bytes
1 terabyte = 1000000000000 bytes and so on.

The IEC convention for computer internal memories (including RAM) becomes:
1 kibibyte (1 KiB) = 1024 bytes
1 mebibyte (1 MiB) = 1048576 bytes
1 gibibyte (1 GiB) = 1073741824 bytes
1 tebibyte (1 TiB) = 1099511627776 bytes and so on.

However, the IEC terms are not universally used and this textbook will use the more
conventional terms shown in Table 1.1. This also ties up with the Cambridge
International Examinations computer science syllabus which uses the same
terminology as in Table 1.1.

1.4 Example use of binary
This section gives an example of a use of the binary system. We will introduce the
idea of computer REGISTERS; this subject is covered in more depth in Chapter 4. A
register is a group of bits; it is often depicted as follows:

Figure 1.2

15

When computers (or microprocessors) are used to control devices (such as robots),
registers are used as part of the control system. The following example describes
how registers can be used in controlling a simple device.

A robot vacuum cleaner has three wheels, A, B and C. A rotates on a spindle to
allow for direction changes (as well as forward and backward movement); B and C
are fixed to revolve around their axles to provide only forward and backward
movement, and have an electric motor attached:

Figure 1.3

An 8-bit register is used to control the movement of the robot vacuum cleaner:

Figure 1.4

If the register contains 1 0 1 0 1 0 1 0 this means ‘motor B is ON and motor C is ON
and both motors are turning to produce FORWARDS motion’. Effectively, the
vacuum cleaner is moving forwards.

Activity 1.3
a What would be the effect if the register contained the following values?
 i 1 0 0 1 1 0 0 0
 ii 1 0 1 0 0 1 0 1
 iii 1 0 1 0 0 1 1 0

16

b What would the register contain if only motor C was ON and the motors
were turning in a BACKWARDS direction?

c What would the register contain if motor B and motor C were both ON but
B was turning in a backward direction and C was turning in a forward
direction?

d What would be the effect if the register contained the following?
1 1 1 1 1 1 1 1

1.5 The hexadecimal system
The HEXADECIMAL SYSTEM is very closely related to the binary system. Hexadecimal
(sometimes referred to as simply ‘hex’) is a base 16 system and therefore needs to
use 16 different ‘values’ to represent each digit.
Because it is a system based on 16 different digits, the numbers 0 to 9 and the letters
A to F are used to represent each hexadecimal (hex) digit. (A = 10, B = 11, C = 12,
D = 13, E = 14 and F = 15.) Using the same method as denary and binary, this gives
the headings of 160, 161, 162, 163 and so on. The typical headings for a hexadecimal
number with five digits would be:

Since 16 = 24 this means that FOUR binary digits are equivalent to each hexadecimal
digit. Table 1.2 summarises the link between binary, hexadecimal and denary.

Table 1.2

Binary value Hexadecimal value Denary value
0 0 0 0 0 0
0 0 0 1 1 1
0 0 1 0 2 2
0 0 1 1 3 3
0 1 0 0 4 4
0 1 0 1 5 5
0 1 1 0 6 6
0 1 1 1 7 7
1 0 0 0 8 8
1 0 0 1 9 9
1 0 1 0 A 10

17

1 0 1 1 B 11
1 1 0 0 C 12
1 1 0 1 D 13
1 1 1 0 E 14
1 1 1 1 F 15

1.5.1 Converting from binary to hexadecimal and
from hexadecimal to binary
Converting from binary to hexadecimal is a fairly easy process. Starting from the
right and moving left, split the binary number into groups of 4 bits. If the last group
has less than 4 bits, then simply fill in with 0s from the left. Take each group of 4 bits
and convert it into the equivalent hexadecimal digit using Table 1.2. Look at the
following two examples to see how this works.

Example 1
1 0 1 1 1 1 1 0 0 0 0 1

First split this up into groups of 4 bits:
1 0 1 1 1 1 1 0 0 0 0 1

Then, using Table 1.2, find the equivalent hexadecimal digits:
B E 1

Example 2
1 0 0 0 0 1 1 1 1 1 1 1 0 1

First split this up into groups of 4 bits:
1 0 0 0 0 1 1 1 1 1 1 1 0 1

The left group only contains 2 bits, so add in two 0s:

0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1
Now use Table 1.2 to find the equivalent hexadecimal digits:

2 1 F D

Activity 1.4
Convert the following binary numbers into hexadecimal:
a 1 1 0 0 0 0 1 1

18

b 1 1 1 1 0 1 1 1
c 1 0 0 1 1 1 1 1 1 1
d 1 0 0 1 1 1 0 1 1 1 0
e 0 0 0 1 1 1 1 0 0 0 0 1
f 1 0 0 0 1 0 0 1 1 1 1 0
g 0 0 1 0 0 1 1 1 1 1 1 1 0
h 0 1 1 1 0 1 0 0 1 1 1 0 0
i 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
j 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0

Converting from hexadecimal to binary is also very straightforward. Using the data in
Table 1.2, simply take each hexadecimal digit and write down the 4-bit code which
corresponds to the digit.

Example 3
4 5 A

Using Table 1.2, find the 4-bit code for each digit:
0 1 0 0 0 1 0 1 1 0 1 0

Put the groups together to form the binary number:
0 1 0 0 0 1 0 1 1 0 1 0

Example 4
B F 0 8

Again just use Table 1.2:
1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0

Then put all the digits together:
1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0

Activity 1.5
Convert the following hexadecimal numbers into binary:
a 6 C
b 5 9
c A A
d A 0 0
e 4 0 E
f B A 6
g 9 C C

19

h 4 0 A A
i D A 4 7
j 1 A B 0

1.5.2 Converting from hexadecimal to denary and
from denary to hexadecimal
To convert a hexadecimal number to denary is fairly straightforward. Take each
hexadecimal digit and multiply it by its value. Add the totals together to obtain the
denary value.

Example 1
4 5 A

First multiply each digit by its value:

Add the totals together:
denary number = 1 1 1 4

Example 2
C 8 F

First multiply each digit by its value:

Add the totals together:
denary number = 3 2 1 5

Activity 1.6
Convert the following hexadecimal numbers into denary:
a 6 B
b 9 C
c 4 A
d F F
e 1 F F
f A 0 1
g B B 4

20

h C A 8
i 1 2 A E
j A D 8 9

To convert from denary to hexadecimal is a little more difficult. As with the
conversion from binary to denary, there are two very similar methods that can be
used. Again, the first method is ‘trial and error’ and the second method is more
methodical and involves repetitive division.

Method 1
Consider the conversion of the denary number, 2004, into hexadecimal. This method
involves placing hexadecimal digits in the appropriate position so that the total
equates to 2004:

A quick check shows that: (7 × 256) + (13 × 16) + (4 × 1) gives 2004.

Method 2
This method involves successive division by 16. The remainders are then read from
BOTTOM to TOP to give the hexadecimal value. Again using 2004, we get:

Figure 1.5

Activity 1.7
Convert the following denary numbers into hexadecimal (using both
methods):
a 9 8
b 2 2 7
c 4 9 0
d 5 1 1
e 8 2 6
f 1 0 0 0
g 2 6 3 4

21

h 3 7 4 3
i 4 0 0 7
j 5 0 0 0

1.6 Use of the hexadecimal system
This section reviews five uses of the hexadecimal system. The information in this
chapter gives the reader sufficient grounding in each topic at this level. Further
material can be found by searching the internet, but be careful that you don’t go off at
a tangent.

1.6.1 Memory dumps
Since it is much easier to work with: B 5 A 4 1 A F C
rather than: 1 0 1 1 | 1 0 0 1 | 1 0 1 0 | 0 1 0 0 | 0 0 0 1 | 1 0 1 0 | 1 1 1 1 | 1 1 0 0
hexadecimal is often used when developing new software or when trying to trace
errors in programs. The contents of part of the computer memory can hold the key to
help solve many problems. When the memory contents are output to a printer or
monitor, this is known as a MEMORY DUMP:

Figure 1.6

A program developer can look at each of the hexadecimal codes (as shown in Figure
1.6) and determine where the error lies. The value on the far left shows the memory
location so that it is possible to find out exactly where in memory the fault occurs.
This is clearly much more manageable using hexadecimal rather than using binary.
It’s a very powerful fault-tracing tool, but requires considerable knowledge of
computer architecture in order to interpret the results.

1.6.2 HyperText Mark-up Language (HTML)

22

HYPERTEXT MARK-UP LANGUAGE (HTML) is used when writing and developing
web pages. HTML isn’t a programming language but is simply a mark-up language. A
mark-up language is used in the processing, definition and presentation of text (for
example, specifying the colour of the text).

HTML uses <tags> which are used to bracket a piece of code; for example, <td>
starts a standard cell in an HTML table, and </td> ends it. Whatever is between the
two tags has been defined. Here is a short section of HTML code:

<tr>

 <td><h3>Small car</h3>

 <h3>Used car sales</h3>

 <h2>Cars from $500</h2>

<h2>Cash sales only</h2></td></br>

</tr>

<table border="1">

 <colgroup>

 <col span="2" style="background-color:red">

 <col style="background-color:yellow">

 </colgroup>

HTML code is often used to represent colours of text on the computer screen. The
values change to represent different colours. The different intensity of the three
primary colours (red, green and blue) is determined by its hexadecimal value. For
example:
• # FF 00 00 represents primary colour red
• # 00 FF 00 represents primary colour green
• # 00 00 FF represents primary colour blue
• # FF 00 FF represents fuchsia
• # FF 80 00 represents orange
• # B1 89 04 represents tan
and so on producing almost any colour the user wants. There are many websites
available that allow a user to find the HTML code for the colour needed.

Activity 1.8
Using the internet, find the HTML codes for a number of colours.
Try entering HTML code into the computer and see how the colours and
font types can be changed to good effect.
Make use of websites, such as www.html.am/ to produce your own web
pages.

23

http://www.html.am/

With a little practice, you can import/embed images into your own design of
web page using freely available software.
Remember this is not a programming language. It is simply a mark-up
language, so very little programming skill is required to use HTML.

1.6.3 Media Access Control (MAC)
A MEDIA ACCESS CONTROL (MAC) ADDRESS refers to a number which uniquely
identifies a device on the internet. The MAC address refers to the network interface
card (NIC) which is part of the device. The MAC address is rarely changed so that a
particular device can always be identified no matter where it is.

A MAC address is usually made up of 48 bits which are shown as six groups of
hexadecimal digits (although 64-bit addresses are also known):

NN – NN – NN – DD – DD – DD
or
NN:NN:NN:DD:DD:DD

where the first half (NN – NN – NN) is the identity number of the manufacturer of the
device and the second half (DD – DD – DD) is the serial number of the device. For
example: 00 – 1C – B3 – 4F – 25 – FE is the MAC address of a device produced by
the Apple Corporation (code: 001CB3) with a serial number of 4F25FE. Sometimes
lower case hexadecimal letters are used in the MAC address: 00-1c-b3-4f-25-fe.
Other manufacturer identity numbers include:
• 00 – 14 – 22 which identifies devices made by Dell
• 00 – 40 – 96 which identifies devices made by Cisco
• 00 – A0 – C9 which identifies devices made by Intel, and so on.

Types of MAC address
It should be pointed out that there are two types of MAC address: the UNIVERSALLY
ADMINISTERED MAC ADDRESS (UAA) and the LOCALLY ADMINISTERED MAC
ADDRESS (LAA).

The UAA is by far the most common type of MAC address and this is the one set
by the manufacturer at the factory. It is rare for a user to want to change this MAC
address.

However, there are some occasions when a user or an organisation wishes to
change their MAC address. This is a relatively easy task to carry out but it will cause
big problems if the changed address isn’t unique.

There are a few reasons why the MAC address needs to be changed using LAA:
• Certain software used on mainframe systems needs all the MAC addresses of

devices to fall into a strict format; because of this, it may be necessary to change
the MAC address of some devices to ensure they follow the correct format.

• It may be necessary to bypass a MAC address filter on a router or a firewall; only
24

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

MAC addresses with a certain format are allowed through, otherwise the devices
will be blocked.

• To get past certain types of network restrictions it may be necessary to emulate
unrestricted MAC addresses; hence it may require the MAC address to be changed
on certain devices connected to the network.

1.6.4 Web addresses
Each character used on a keyboard has what is known as an ASCII CODE
(AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE). These codes can
be represented using hexadecimal values or decimal values. Figure 1.7 shows part of
an ASCII table.

25

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Figure 1.7

A good example of the use of ASCII codes is the representation of a web address (or
URL, which stands for uniform resource locator) such as www.hodder.co.uk which
becomes (using hexadecimal values):

(Note: the % sign is used to denote that hexadecimal is being used.)

Activity 1.9
Using the ASCII code table (Figure 1.7) convert the following URLs into the

26

http://www.hodder.co.uk
Marie
Highlight

Marie
Highlight

Marie
Highlight

equivalent hexadecimal:
a www.cie.org.uk
b www.cie.org.uk/computer_science
c https://www.hodder.co.uk
d www.HodderEducation.co.uk
e http://www.ucles.ac.uk/computing.htm

Sometimes the hexadecimal addresses are used in the address of files or web pages
as a security feature. It takes longer to type in the URL using the hexadecimal codes,
but it has the advantage that you are unlikely to fall into the trap of copying and
pasting a ‘fake’ website address.

1.6.5 Assembly code and machine code
Computer memory can be referred to directly using machine code or assembly code.
This can have many advantages to program developers or when carrying out
troubleshooting.

Machine code and assembly code are covered in much more detail in Chapter 7;
here we are simply interested in how hexadecimal fits into the picture.

Using hexadecimal makes it much easier, faster and less error prone to write code
compared to binary. Using true machine code (which uses binary) is very
cumbersome and it takes a long time to key in the values. It is also very easy to
mistype the digits in a ‘sea of 1s and 0s’. Here is a simple example:

STO FFA4 (assembly code)
A5E4 FFA4 (machine code using hexadecimal values)
1010 0101 1110 0100 1111 1111 1010 0100 (machine code using binary)

Machine code and assembly code are examples of low-level languages and are used
by software developers when producing, for example, computer games. As you will
find in Chapter 7, although they look cumbersome, they have many advantages at the
development stage of software writing (especially when trying to locate errors in the
code).

27

http://www.cie.org.uk
http://www.cie.org.uk/computer_science
https://www.hodder.co.uk
http://www.HodderEducation.co.uk
http://www.ucles.ac.uk/computing.htm
Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

Marie
Highlight

	Section 1 Theory of computer science
	Chapter 1 Binary systems and hexadecimal
	1.1 Introduction
	1.2 The binary system
	1.3 Measurement of the size of computer memories
	1.4 Example use of binary
	1.5 The hexadecimal system
	1.6 Use of the hexadecimal system

