
20.2 File processing and exception handling
WHAT YOU SHOULD ALREADY KNOW
In Chapter 10, Section 10.3, you learnt about text files, and in Chapter 13, Section 13.2, you
learnt about file organisation and access. Review these sections, then try these three questions
before you read the second part of this chapter.
1 a) Write a program to set up a text file to store records like this, with one record on every

line.

b) Write a procedure to append a record.
c) Write a procedure to find and delete a record.
d) Write a procedure to output all the records.

2 Describe three types of file organisation
3 Describe two types of file access and explain which type of files each one is used for.

Key terms
Read – file access mode in which data can be read from a file.

Write – file access mode in which data can be written to a file; any existing data stored in the
file will be overwritten.

Append – file access mode in which data can be added to the end of a file.

Open – file-processing operation; opens a file ready to be used in a program.

Close – file-processing operation; closes a file so it can no longer be used by a program.

Exception – an unexpected event that disrupts the execution of a program.

Exception handling – the process of responding to an exception within the program so that the
program does not halt unexpectedly.

20.2.1 File processing operations
Files are frequently used to store records that include data types other than string. Also, many
programs need to handle random access files so that a record can be found quickly without
reading through all the preceding records.

A typical record to be stored in a file could be declared like this in pseudocode:

Storing records in a serial or sequential file
The algorithm to store records sequentially in a serial (unordered) or sequential (ordered on a key
field) file is very similar to the algorithm for storing lines of text in a text file. The algorithm
written in pseudocode below stores the student records sequentially in a serial file as they are
input.

Note that PUTRECORD is the pseudocode to write a record to a data file and GETRECORD is the
pseudocode to read a record from a data file.

Identifier name Description

studentRecord Array of records to be written to the file

studentFile File name

counter Counter for records

Table 20.10

If a sequential file was required, then the student records would need to be input into an array of
records first, then sorted on the key field registerNumber, before the array of records was
written to the file.

Here are programs in Python, VB and Java to write a single record to a file.

Python

VB

Java

(Java programs using files need to include exception handling – see Section 20.2.2 later in this
chapter.)

ACTIVITY 20L
In the programming language of your choice, write a program to
• input a student record and save it to a new serial file
• read a student record from that file
• extend your program to work for more than one record.

EXTENSION ACTIVITY 20E
In the programming language of your choice, extend your program to sort the records on
registerNumber before storing in the file.

Adding a record to a sequential file
Records can be appended to the end of a serial file by opening the file in append mode. If records
need to be added to a sequential file, then the whole file needs to be recreated and the record
stored in the correct place.

The algorithm written in pseudocode below inserts a student record into the correct place in a
sequential file.

Identifier name Description

studentRecord record from student file

newStudentRecord new record to be written to the file

studentFile student file name

newStudentFile temporary file name

Table 20.11

Note that you can directly append a record to the end of a file in a programming language by
opening the file in append mode, as shown in the table below.

Opening a file in append mode Language

Opens the file with the
name fileName in append
mode in Python

Opens the file with the
name fileName in append
mode in VB.NET

Opens the file with the
name fileName in append
mode in Java

Table 20.12

ACTIVITY 20M
In the programming language of your choice, write a program to
• put a student record and append it to the end of a sequential file
• find and output a student record from a sequential file using the key field to identify the

record
• extend your program to check for record not found (if required).

EXTENSION ACTIVITY 20F
Extend your program to input a student record and save it to in the correct place in the
sequential file created in Extension Activity 20E.

Adding a record to a random file
Records can be added to a random file by using a hashing function on the key field of the record
to be added. The hashing function returns a pointer to the address where the record is to be
added.

In pseudocode, the address in the file can be found using the command:

The record can be stored in the file using the command:

Or it can be retrieved using:

The file needs to be opened as random:

The algorithm written in pseudocode below inserts a student record into a random file.

EXTENSION ACTIVITY 20G
In the programming language of your choice, write a program to input a student record and
save it to a random file.

Finding a record in a random file
Records can be found in a random file by using a hashing function on the key field of the record
to be found. The hashing function returns a pointer to the address where the record is to be
found, as shown in the example pseudocode below.

EXTENSION ACTIVITY 20H
In the programming language of your choice, write a program to find and output a student
record from a random file using the key field to identify the record.

20.2.2 Exception handling
An exception is an unexpected event that disrupts the execution of a program. Exception
handling is the process of responding to an exception within the program so that the program
does not halt unexpectedly. Exception handling makes a program more robust as the exception
routine traps the error then outputs an error message, which is followed by either an orderly
shutdown of the program or recovery if possible.

An exception may occur in many different ways, for example
• dividing by zero during a calculation
• reaching the end of a file unexpectedly when trying to read a record from a file
• trying to open a file that has not been created
• losing a connection to another device, such as a printer.

Exceptions can be caused by
• programming errors
• user errors
• hardware failure.

Error handling is one of the most important aspects of writing robust programs that are to be
used every day, as users frequently make errors without realising, and hardware can fail at any
time. Frequently, error handling routines can take a programmer as long, or even longer, to write
and test as the program to perform the task itself.

The structure for error handling can be shown in pseudocode as:

Here are programs in Python, VB and Java to catch an integer division by zero exception.

Python

VB

Java

ACTIVITY 20N
In the programming language of your choice, write a program to check that a value input is an
integer.

ACTIVITY 20O
In the programming language of your choice, extend the file handling programs you wrote in
Section 20.2.1 to use exception handling to ensure that the files used exist and allow for the
condition unexpected end of file.

End of chapter questions
1 A declarative programming language is used to represent the following facts and rules:

	A LEVEL
	20 Further programming
	20.2 File processing and exception handling

