20.2 File processing and exception handling

WHAT YOU SHOULD ALREADY KNOW

In Chapter 10, Section 10.3, you learnt about text files, and in Chapter 13, Section 13.2, you
learnt about file organisation and access. Review these sections, then try these three questions
before you read the second part of this chapter.

1 a) Write a program to set up a text file to store records like this, with one record on every
line.

TYPE

TstudentRecord
DECLARE name : STRING
DECLARE address : STRING
DECLARE className : STRING

ENDTYPE

b) Write a procedure to append a record.
¢) Write a procedure to find and delete a record.
d) Write a procedure to output all the records.
2 Describe three types of file organisation
3 Describe two types of file access and explain which type of files each one is used for.

Key terms
Read — file access mode in which data can be read from a file.

Write — file access mode in which data can be written to a file; any existing data stored in the
file will be overwritten.

Append — file access mode in which data can be added to the end of a file.

Open — file-processing operation; opens a file ready to be used in a program.

Close — file-processing operation; closes a file so it can no longer be used by a program.
Exception — an unexpected event that disrupts the execution of a program.

Exception handling — the process of responding to an exception within the program so that the
program does not halt unexpectedly.

20.2.1 File processing operations

Files are frequently used to store records that include data types other than string. Also, many
programs need to handle random access files so that a record can be found quickly without
reading through all the preceding records.

A typical record to be stored in a file could be declared like this in pseudocode:

TYPE
TstudentRecord
DECLARE name : STRING
DECLARE registerNumber : INTEGER
DECLARE dateOfBirth : DATE
DECLARE fullTime : BOOLEAN
ENDTYPE

Storing records in a serial or sequential file

The algorithm to store records sequentially in a serial (unordered) or sequential (ordered on a key
field) file is very similar to the algorithm for storing lines of text in a text file. The algorithm
written in pseudocode below stores the student records sequentially in a serial file as they are
input.

Note that PUTRECORD is the pseudocode to write a record to a data file and GETRECORD is the
pseudocode to read a record from a data file.

DECLARE studentRecord : ARRAY[1:50] OF TstudentRecord
DECLARE studentFile : STRING
DECLARE counter : INTEGER
counter « 1
studentFile « "studentFile.dat"
OPEN studentFile FOR WRITE
REPEAT
OUTPUT "Please enter student details"
OUTPUT "Please enter student name"
INPUT studentRecord.name[counter]
IF studentRecord.name <> ""
THEN
OUTPUT "Please enter student’s register number"
INPUT studentRecord.registerNumber[counter]
OUTPUT "Please enter student’s date of birth"
INPUT studentRecord.dateOfBirth[counter]

OUTPUT "Please enter True for fulltime or
False for part-time"

INPUT studentRecord.fullTimel[counter]
PUTRECORD, studentRecord[counter]

counter <« counter + 1

ELSE
CLOSEFILE(studentFile)
ENDIF
UNTIL studentRecord.name = ""
QUTPUT "The file contains these records: "
OPEN studentFile FOR READ
counter « 1
REPEAT
GETRECORD, studentRecord[counter]
OUTPUT studentRecord[counter]
counter <« counter + 1
UNTIL EOF(studentFile)
CLOSEFILE(studentFile)

Identifier name Description
studentRecord Array of records to be written to the file
studentFile File name
counter Counter for records
Table 20.10

If a sequential file was required, then the student records would need to be input into an array of
records first, then sorted on the key field registerNumber, before the array of records was
written to the file.

Here are programs in Python, VB and Java to write a single record to a file.

Python

import pickle e {Lfbr"ar"yto use binaryﬁle5J

class student:

def init (self):
self.name = ""
self.registerNumber = 0
gself.dateOfBirth = datetime.datetime.now()
self.fullTime = True

studentRecord = student()

-

studentFile = open('students.DAT','w+b') @ \ Create a binary file to store the data]

print("Please enter student details")

studentRecord.name = input("Please enter student name ")
studentRecord.registerNumber = int({input("Please enter student's register number "))
year = int{input("Please enter student's year of birth YYYY "})

month = int(input("Please enter student's month of birth MM "))

day = int(input("Please enter student's day of birth DD "))

studentRecord.date0fBirth = datetime.datetime(year, month, day)

studentRecord.fullTime = bool{input("Please enter True for full-time or False for

part-time "))

pickle.dump (studentRecord, studentFile) e {Wr"l“te record t.o ﬁ|8J

print(studentRecord.name, studentRecord.registerNumber, studentRecord.dateOfBirth,

studentRecord.fullTime)

studentFile.close()
/’/{Opsn binary file to read from]
studentFile = open('students.DAT','rb')

studentRecord = pickle.load(studentFile) = [Read record from ﬁ|€-)

print(studentRecord.name, studentRecord.registerNumber, studentRecord.dateOfBirth,
gtudentRecord.fullTime)

studentFile.closel()

VB

Option Explicit oOn

Imports System.IO [Library to use Input and Ou‘tputJ

Module Modulel
Public Sub Main()
Dim studentFileWriter As BinaryWriter
Dim studentFileReader As BinaryReader

Dim studentFile As FileStream

Din year; monkh; day Aw Inkeger (Cr‘eateaﬁleto 5‘tor‘ethedataJ

Dim studentRecord As New student()

studentFile = New FileStream("studentFile.DAT", FileMode.Create)

studentFileWriter = New BinaryWriter(studentFile)
Coneocle.Write("Please enter student name ")

gtudentRecord.name = Console.ReadLine()

Console.Write("Please enter student's register number ")

studentRecord.registerNumber = Integer.Parse(Console.ReadLine())

Congole.Write("Pleage enter student's year of birth ¥YYYY ")

year =Integer.Parse(Console.ReadLine())

Console.Write("Please enter student's month of birth MM ")

month =Integer.Parse(Conscle.ReadLine())

Console.Write("Please enter student's day of birth DD ")

day =Integer.Parse(Console.ReadLine())

studentRecord.dateOfBirth = DateSerial(year, month, day)

Console.Write("Please enter True for full-time or False for part-time ")

studentRecord.fullTime = Boolean.Parse(Console.ReadLine())

astudentFileWriter.Write(studentRecord.name)

atudentFileWriter.Write(studentRecord.registerNumber)
.—[erte record to ﬁleJ
studentFileWriter.Write(studentRecord.dateOfBirth)

gtudentFileWriter.Write(studentRecord.fullTime)

[Opeﬂ file to read ﬁ"OH"I]

studentFileWriter.Close()

studentFile.Close()
gtudentFile = New FileStream("studentFile.DAT", FileMode.Open)
atudentFileReader = New BinaryReader(studentFile)

studentRecord.name = studentFileReader.ReadString()

studentRecord.registerNumber = studentFileReader.ReadInt32()

.{Read record from ﬁle]
studentRecord.dateOfBirth = studentFileReader.ReadString()
studentRecord.fullTime = studentFileReader.ReadBoolean()
atudentFileReader.Cloge()
studentFile.Close()

Console.WriteLine (studentRecord.name & " " & studentRecord.registerNumber
& " " & gtudentRecord.dateOfBirth & " " & studentRecord.fullTime)

Console.ReadKey ()

End Sub

class student:
Public name As String
Public registerNumber As Integer
Public dateOfBirth As Date
Public fullTime As Boolean

End Class

End Module

Java

(Java programs using files need to include exception handling — see Section 20.2.2 later in this
chapter.)

import
import
import
import

import

java.io.File;
java.io.FileWriter;
java.util.Scanner;
java.util.Date;

java.text.SimpleDateFormat;

class Student {

private String name;

private int registerNumber;

private Date dateOfBirth;

private boolean fullTime;
student(String name, int registerNumber, Date dateOfBirth, boolean fullTime) {
this.name = name;
this.registerNumber = registerNumber;
this.dateOfBirth = dateCOfBirth;
this.fullTime = fullTime;
}
public String tosString() {

return name + " " + registerNumber + " " 4+ dateOfBirth + " " + fullTime;

}

public class StudentRecordFile {
public static void main(String[] args) throws Exception {
Scanner input = new Scanner(System.in);
System.out.println("Please Student details");
System.out.println("Please enter Student name ");
String nameIn = input.next();
System.out.println("Please enter Student's register number ");
int registerNumberIn = input.nextInt();
System.out.println("Pleage enter Student's date of birth as YYYY-MM-DD ");
String DOBIn = input.nexti);
SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd");
Date dateOfBirthIn = format.parse(DOBIn);
System.ocut.println("Please enter true for full-time or falsze for part-time ");
boolean fullTimeIn = input.nextBoolean();

Student studentRecord = new Student(namelIn, registerNumberIn, dateCQfBirthiIn,
fullTimelIn);

System.out.println(studentRecord.toString());

// This is the file that we are going to write to and then read from

File studentFile = new File("Student.txt");

// Write the record to the student file

// Note - this try-with-resources syntax only works with Java 7 and later

try (FileWriter studentFileWriter = new FileWriter(studentFile)) {
studentFileWriter.write(studentRecord.toString());

1

// Print all the lines of text in the student file

try (Scanner studentReader = new Scanner(studentFile)) {

while (studentReader.hasNextLine()) {
String data = studentReader.nextLine();

System.out.println(data);

In the programming language of your choice, write a program to
input a student record and save it to a new serial file
read a student record from that file
extend your program to work for more than one record.

EXTENSION ACTIVITY 20E

In the programming language of your choice, extend your program to sort the records on
registerNumber before storing in the file.

Adding a record to a sequential file

Records can be appended to the end of a serial file by opening the file in append mode. If records
need to be added to a sequential file, then the whole file needs to be recreated and the record
stored in the correct place.

The algorithm written in pseudocode below inserts a student record into the correct place in a
sequential file.

DECLARE studentRecord : TstudentRecord
DECLARE newStudentRecord : TstudentRecord
DECLARE studentFile : STRING

DECLARE newStudentFile : STRING

DECLARE recordAddedFlag : BOOLEAN
recordAddedFlag « FALSE

studentFile « "studentFile.dat"
newStudentFile « "newStudentFile.dat"
CREATE newStudentFile [/ creates a new file to write to
OPEN newStudentFile FOR WRITE

OPEN studentFile FOR READ

OUTPUT "Please enter student details"
OUTPUT "Please enter student name"

INPUT newStudentRecord.name

OUTPUT "Please enter student’s register number"

INPUT newStudentRecord.registerNumber
OUTPUT "Please enter student’s date of birth"
INPUT newStudentRecord.dateOfBirth
OUTPUT "Please enter True for full-time or False for part-time"
INPUT newStudentRecord.fullTime
REPEAT
WHILE NOT recordAddedFlag OR ECOF(studentFile)
GETRECORD, studentRecord // gets record from existing file
IF newStudentRecord.registerNumber > studentRecord.registerNumber
THEN
PUTRECORD studentRecord
// writes record from existing file to new file
ELSE
PUTRECORD newStudentRecord
// or writes new record tc new file in the correct place
recordAddedFlag « TRUE
ENDIF
ENDWHILE
IF EOF (studentFile)
THEN
PUTRECORD newStudentRecord
// add new record at end of the new file
ELSE
REPEAT
GETRECORD, studentRecord
PUTRECORD studentRecord
//transfers all remaining records to the new file
ENDIF UNTIL EOF(studentRecord)
CLOSEFILE (studentFile)
CLOSEFILE (newStudentFile)
DELETE (studentFile)
// deletes old file of student records
RENAME newStudentfile, studentfile

// renames new file to be the student record file

Identifier name Description

studentRecord record from student file
newStudentRecord new record to be written to the file
studentFile student file name
newStudentFile temporary file name

Table 20.11

Note that you can directly append a record to the end of a file in a programming language by
opening the file in append mode, as shown in the table below.

Opening a file in append mode

Language

myFile

open("fileName", "a")

Opens the file with the
name fileName in append
mode in Python

myFile = New FileStream("fileName", FileMode.Append)

Opens the file with the
name fileName in append
mode in VB.NET

FileWriter myFile = new FileWriter("fileName", true);

Opens the file with the
name fileName in append
mode in Java

Table 20.12

In the programming language of your choice, write a program to
put a student record and append it to the end of a sequential file
find and output a student record from a sequential file using the key field to identify the

record

extend your program to check for record not found (if required).

EXTENSION ACTIVITY 20F

Extend your program to input a student record and save it to in the correct place in the
sequential file created in Extension Activity 20E.

Adding a record to a random file

Records can be added to a random file by using a hashing function on the key field of the record

to be added. The hashing function returns a pointer to the address where the record is to be

added.

In pseudocode, the address in the file can be found using the command:
SEEK <filename>,<address>
The record can be stored in the file using the command:
PUTRECORD <filenames,<recordname:
Or it can be retrieved using:
GETRECORD <filenames,<recordnames=
The file needs to be opened as random:
OPEN studentFile FOR RANDOM

The algorithm written in pseudocode below inserts a student record into a random file.

DECLARE studentRecord : TstudentRecord

DECLARE studentFile : STRING

DECLARE Address : INTEGER

studentFile « "studentFile.dat"

OPEN studentFile FOR RANDOM

// opens file for random access both read and write
OUTPUT "Please enter student details"

OUTPUT "Please enter student name"

INPUT StudentRecord.name

OUTPUT "Please enter student’s register number"
INPUT studentRecord.registerNumber

OUTPUT "Please enter student’s date of birth"
INPUT studentRecord.dateOfBirth

OUTPUT "Please enter True for full-time or False for
part-time"

INPUT studentRecord.fullTime

address « hash(studentRecord,registerNumber)

// uses function hash to find pointer to address
SEEK studentFile,address

// finde address in file

PUTRECORD studentFile,studentRecord

//writes record to the file

CLOSEFILE (studentFile)

EXTENSION ACTIVITY 20G

In the programming language of your choice, write a program to input a student record and
save it to a random file.

Finding a record in a random file

Records can be found in a random file by using a hashing function on the key field of the record
to be found. The hashing function returns a pointer to the address where the record is to be
found, as shown in the example pseudocode below.

DECLARE studentRecord : TstudentRecord

DECLARE studentFile : STRING

DECLARE Address : INTEGER

studentFile « "studentFile.dat"

OPEN studentFile FOR RANDOM

// opens file for random access both read and write
QUTPUT "Please enter student’s register number"
INPUT studentRecord.registerNumber

address <« hash(studentRecord.registerNumber)

// uses function hash to find pointer to address
SEEK studentFile,address

// finds address in file

GETRECORD studentFile,studentRecord

//reads record from the file

QUTPUT studentRecord

CLOSEFILE (studentFile)

EXTENSION ACTIVITY 20H

In the programming language of your choice, write a program to find and output a student
record from a random file using the key field to identify the record.

20.2.2 Exception handling

An exception is an unexpected event that disrupts the execution of a program. Exception
handling is the process of responding to an exception within the program so that the program
does not halt unexpectedly. Exception handling makes a program more robust as the exception
routine traps the error then outputs an error message, which is followed by either an orderly
shutdown of the program or recovery if possible.

An exception may occur in many different ways, for example

» dividing by zero during a calculation

* reaching the end of a file unexpectedly when trying to read a record from a file

* trying to open a file that has not been created

* losing a connection to another device, such as a printer.

Exceptions can be caused by
* programming errors

* USer errors

* hardware failure.

Error handling is one of the most important aspects of writing robust programs that are to be
used every day, as users frequently make errors without realising, and hardware can fail at any
time. Frequently, error handling routines can take a programmer as long, or even longer, to write
and test as the program to perform the task itself.

The structure for error handling can be shown in pseudocode as:

TRY
<statements>
EXCEPT
<statements>
ENDTRY

Here are programs in Python, VB and Java to catch an integer division by zero exception.

Python

def division(firstNumber, secondNumber):

try: /[integer division HJ

myAnswer = firstNumber // secondNumber

print('Answer ', myAnswer)
eXcept:
print('Divide by zero')

divisgion(12, 3)

divigion(10, 0)

VB

Module Modulel
Public Sub Main()
division(1l2, 3)
division(10, 0)
Console.ReadKey/()
End Sub
Sub division(ByVal firstNumber As Integer, ByVal secondNumber As Integer)

Dim myAnswer As Integer

Try integer division \]
myAnswer = firstNumber Y\ secondNumber
Console.WritelLine("Answer " & myAnswer)

Catch e As DivideByZeroException
Console.WritelLine("Divide by zero")
End Try
End Sub
End Module

Java

public class Division {
public static void main(String[] args) {
division(12, 3);
division(10, 0);

}

public static void division(int firstNumber, int secondNumber){

int myAnswer; Automatic Integer division because

try { there are integers on both sides of

the division operator
myAnswer = firstNumber / secondNumber;

System.out.println("Answer " + myAnswer);

}

catch (ArithmeticException e) {

System.out.println("Divide by zero");

In the programming language of your choice, write a program to check that a value input is an
integer.

In the programming language of your choice, extend the file handling programs you wrote in

Section 20.2.1 to use exception handling to ensure that the files used exist and allow for the
condition unexpected end of file.

End of chapter questions

1 A declarative programming language is used to represent the following facts and rules:

	A LEVEL
	20 Further programming
	20.2 File processing and exception handling

