——

- —

v] — -

Further Problem-Solving and
Programming Skills

»

Computational Thinking

and Problem-Solving

Learning objectives
By the end of this chapter you should be able to:

show understanding of how to model a complex system
by only including essential details

write a binary search algorithm to solve a particular
problem

show understanding of the conditions necessary for the
use of a binary search

show understanding of how the performance of a binary
search varies according to the number of data items
write algorithms to:

« implement an insertion sort

« implement a bubble sort

« find an item in each of the following;: linked list, binary
tree, hash table

- insert an item into each of the following: stack, queue,
linked list, binary tree, hash table

« delete an item from each of the following: stack, queue,
linked list

show understanding that performance of a sort routine
may depend on the initial order of the data and the
number of data items

show understanding that different algorithms which
perform the same task can be compared by using criteria
such as time taken to complete the task and memory used

show understanding that an abstract data type (ADT) is a
collection of data and a set of operations on those data
show understanding that data structures not available
as built-in types in a particular programming language
need to be constructed from those data structures which
are built-in within the language

show how it is possible for ADTs to be implemented from
another ADT

describe the following ADTs and demonstrate how they can
be implemented from appropriate built-in types or other
ADTs: stack, queue, linked list, dictionary, binary tree.

317

318

Cambridge International AS and A level Computer Science

23.01 What is computational thinking?

We have already been thinking computationally in Chapters 11 to 15. Here is the formal
definition:

Computational thinking is a problem-solving process where a number of steps are taken in
order to reach a solution, rather than relying on rote learning to draw conclusions without
considering these conclusions.

Computational thinking involves abstraction, decomposition, data modelling, pattern
recognition and algorithm design.

Abstraction

Abstraction involves filtering out information that is not necessary to solving the problem.
There are many examples in everyday life where abstraction is used. In Chapter 11 (Section
11.01), we saw part of the underground map of London, UK. The purpose of this map is

to help people plan their journey within London. The map does not show a geographical
representation of the tracks of the underground train network.nor does it show the streets
above ground. It shows the stations and which train lines connect the stations. In other
words, the information that is not necessary when planning how to get from Kings Cross St.
Pancras to Westminster is filtered out. The essential information we need to be able to plan
our route is clearly represented.

Abstraction gives us the power to deal with complexity. An algorithm is an abstraction of a
process that takes inputs, executes a sequence of steps, and produces outputs. An abstract
data type defines an abstract set of values and operations for manipulating those values.

Decomposition

Decomposition means breaking tasks down into smaller parts in order to explain a process
more clearly. Decomposition is another word for step-wise refinement (covered in Chapter
12, Section 12.01). This led us to structured programming using procedures and functions
with parameters, covered in Chapter 14 (Section 14.03 to 14.05).

Data modelling

Data modelling involves analysing and organising data. In Chapter 13 we met simple data
types such as integer, character and Boolean. The string data type is a composite type:

a sequence of characters. When we have groups of data items we used one-dimensional
(1D) arrays to represent linear lists and two-dimensional (2D) arrays to represent tables
or matrices. We stored data in text files. In Chapter 10, we used data modelling to design
database tables.

We can set up abstract data types to model real-world concepts, such as records, queues

or stacks. When a programming language does not have such data types built-in, we can
define our own by building them from existing data types (see Section 23.03). There are more
ways to build data models. In Chapter 27 we cover object-oriented programming where we
build data models by defining classes. In Chapter 29 we model data using facts and rules. In
Chapter 26 we cover random files.

Chapter 23: Computational Thinking and Problem-solving

Pattern recognition

Pattern recognition means looking for patterns or common solutions to common problems

and exploiting these to complete tasks in a more efficient and effective way. There are many
standard algorithms to solve standard problems, such as insertion sort or binary search (see
Section 23.02).

Algorithm design
Algorithm design involves developing step-by-step instructions to solve a problem (see
Chapter 11).

23.02 Standard algorithms

Bubble sort
In Chapter 11, we developed the algorithm for a bubble sort (Worked Example 11.12).

Discussion Point:

What were the essential features of a bubble sort?

TASK 23.01

Write program code for the most efficient bubble sort algorithm. Assume that the items to be
sorted are stored in a 1D array with n elements.

Insertion sort

Imagine you have a number of cards with a different value printed on each card. How would
you sort these cards into order of increasing value?

You can consider the pile of cards as consisting of a sorted part and an unsorted part. Place
the unsorted cards in a pile on the table. Hold the sorted cards as a pack in your hand. To
start with only the first (top) card is sorted. The card on the top of the pile on the table is the
next card to be inserted. The last (bottom) card in your hand is your current card.

Figure 23.01 shows the sorted cards in your hand as blue and the pile of unsorted cards as
white. The next card to be inserted is shown in red. Each column shows the state of the pile
as the cards are sorted.

Position
number
1
2
3 54 REey
4 17 T Sorted
5 93 93 Next card
6 28 28 Unsorted
Figure 23.01 Sorting cards

Repeat the following steps until all cards in the unsorted pile have been inserted into the
correct position:

1 Repeat until the card to be inserted has been placed in its correct position.

320

Cambridge International AS and A level Computer Science

1.1 Compare the current card with the card to be inserted.

1.2 Ifthe card to be inserted is greater than the current card, insert it below the current
card.

1.3 Otherwise, if there is a card above the current card in your hand, make this your new
current card.

14 Ifthereisno new current card, place the card to be inserted at the top of the sorted
pile.
What happens when you work through the sorted cards to find the correct position for the
card to be inserted? In effect, as you consider the cards in your hand, you move the current
card down a position. If the value of the card to be inserted is smaller than the last card you
considered, then the card is inserted at the top of the pile (position 1).

This method is known as an insertion sort. It is a standard sort method.

We can write this algorithm using pseudocode. Assume the values to be sorted are stored in
alDarray, List:

FOR Pointer « 2 TO NumberOfitems
ItemToBeInserted <« List[Pointer]
CurrentItem <« Pointer - 1 // pointer to last item in sorted part of list
WHILE (List[CurrentItem] > ItemToBelInserted) AND (CurrentItem > 0)
List[CurrentItem + 1]+« List[CurrentItem]// move current item down
CurrentItem « CurrentItem - 1 // look at the item above
ENDWHILE
List[CurrentItem + 1]+« ItemToBelInserted // insert item
ENDFOR

TASK 23.02

1 Dry-run the insertion sort algorithm using a trace table. Assume the list consists of the
following six items in the order given: 53, 21, 60, 18, 42, 19.

2 Write program code for the insertion sort algorithm. Assume that the items to be sorted are
stored in a 1D array with n elements.

Extension question 23.01
Investigate the performances of the insertion sort and the bubble sort by:

» varying the initial order of the items
 increasing the number of items to be sorted.
Binary search

In Chapter 11 we developed the algorithm for a linear search (Worked Example 11.11). This is
the only way we can systematically search an unordered list. However, if the list is ordered,
then we can use a different technique.

Consider the following real-world example.

If you want to look up a word in a dictionary, you are unlikely to start searching for the word
from the beginning of the dictionary. Suppose you are looking for the word ‘quicksort’. You
look at the middle entry of the dictionary (approximately) and find the word ‘magnetic’.
‘quicksort’ comes after ‘magnetic’, so you look in the second half of the dictionary. Again you
look at the entry in the middle of this second half of the dictionary (approximately) and find

Chapter 23: Computational Thinking and Problem-solving

the word ‘report’. ‘quicksort’ comes before ‘report’, so you look in the third quarter. You can
keep looking at the middle entry of the part which must contain your word, until you find the
word. If the word does not exist in the dictionary, you will have no entries in the dictionary left
to find the middle of.

This method is known as a binary search. It is a standard method.

Binary search: repeated checking of the middle item in an ordered search list and discarding the half
of the list which does not contain the search item

We can write this algorithm using pseudocode. Assume the values are sorted in ascending
orderand stored in a 1D array, List of size MaxItems.

Found <« FALSE
SearchFailed « FALSE
First « 1

Last « MaxItems // set boundaries of search area

WHILE NOT Found AND NOT SearchFailed i
Middle « (First + Last) DIV 2 // find middle of current search area
IF List[Middle] = SearchItem

THEN
Found <« TRUE
ELSE
IF First »>= Last // no search area left
THEN
SearchFailed « TRUE
ELSE
IF List[Middle] > SearchItem
THEN // must be in first half
Last « Middle - 1 // move upper boundary
ELSE // must be in second half
First <« Middle + 1 // move lower boundary
ENDIF
ENDIF
ENDIF
ENDWHILE
IF Found = TRUE
THEN
OUTPUT Middle // output position where item was found
ELSE
OUTPUT "Item not present in array"
ENDIF
TASK 23.03

Dry-run the binary search algorithm using a trace table. Assume the list consists of the
following 20 items in the order given: 7, 12, 19, 23, 27, 33, 37, 41, 45, 56, 59, 60, 62, 71, 75, 80, 84,
88,9299

Search for the value 60. How many times did you have to execute the while loop?

Dry-run the algorithm again, this time searching for the value 34. How many times did you
have to execute the while loop?

322

Cambridge International AS and A level Computer Science

binary search

vhen using a linear search? Can

23.03 Abstract data types (ADTs)

An abstract data type is a collection of data. When we want to use an abstract data type,
we need a set of basic operations:

e create a new instance of the data structure
 find an element in the data structure

e insertanew element into the data structure
o delete an element from the data structure

* access all elements stored in the data structure in a systematic manner.

Abstract data type: a collection of data with associated operations

The remainder of this chapter describes the following ADTs: stack, queue, linked list, binary
tree, hash table and dictionary. It also demonstrates how they can be implemented from
appropriate built-in types or other ADTs.

23.04 Stacks

What are the features of a stack in the real world? To make a stack, we pile
items on top of each other. The item that is accessible is the one on top of the
stack. If we try to find an item in the stack and take it out, we are likely to cause
the pile of items to collapse.

Figure 23.02 shows how we can represent a stack when we have added four
items in this order: A, B, C, D. Note that the slots are shown numbered from the
bottom as this is more intuitive.

« TopOfStackPointer

The BaseofStackpointer will always point to the first slot in the stack. The
TopOfStackPointer Will point to the last element pushed onto the stack.
When an element is removed from the stack, the Topofstackpointer will
decrease to point to the element now at the top of the stack.

< BaseOfStackPointer

H N W D> o N

> | |0 |O

Figure 23.02 A stack

< FrontOfQueuePointer

23.05 Queues

What are the features of a queue in the real world? When people form a queue,
they join the queue at the end. People leave the queue from the front of the
queue. Ifitis an orderly queue, no-one pushes in between and people don’t
leave the queue from any other position.

m o0 |w| >

< EndOfQueuePointer

Figure 23.03 shows how we can represent a queue when five items have joined
the queue in this order: A, B, C, D, E.

o N o Ul WN =

Figure 23.03 A queue

Chapter 23: Computational Thinking and Problem-solving

When the item at the front of the queue leaves, we need to move all the 1 |
other items one slot forward. This would involve a lot of moving of data. 234
A more efficient way to make use of the slots is the concept of a ‘circular’ 3 K | « EndofQueuePointer
queue. Pointers show where the front and end of the queue are. Eventually 4
the queue will ‘wrap around’ to the beginning. Figure 23.04 shows a 5
circular queue after 11 items have joined and five items have left the 6 | F |« FrontOfQueuePointer
queue. 7 G
8 H
23.06 Linked liStS Figure 23.04 A circular queue

In Chapter 11 we used an array as a linear list. In a linear list, the list items are stored in
consecutive locations. This is not always appropriate. Another method is to store an
individual list item in whatever location is available and link the individual item into an
ordered sequence using pointers.

An element of a list is called a node. A node can consist of several data items and a pointer,
which is a variable that stores the address of the node it points to.

A pointer that does not point at anything is called a null poihter. It is usually represented
by &. A variable that stores the address of the first element is called a start pointer.

Node: an element of a list

Pointer: a variable that stores the address of the node it points to
Null pointer: a pointer that does not point at anything

Start pointer: a variable that stores the address of the first element of a linked list

In Figure 23.05, the data value in the node box represents the key field of that node. There are
likely to be many data items associated with each node. The arrows represent the pointers.

It does not show at which address a node is stored, so the diagram does not give the value of
i the pointer, only where it conceptually links to.

StartPointer

A B D

Y
=
Q

node node node

Figure 23.05 Conceptual diagram of a linked list

324

Cambridge International AS and A level Computer Science

Anew node, A, is inserted at the beginning of the list. The content of startrointer is copied
into the new node’s pointer field and startPointer is set to point to the new node, A.

StartPointer

A4
o
\4
=
Q

----- S B

A node node node

A

node

Figure 23.06 Conceptual diagram of adding a new node to the beginning of a linked list

In Figure 23.07, a new node, P, is inserted at the end of the list. The pointer field of node L
points to the new node, P. The pointer field of the new node, P, contains the null pointer.

StartPointer

> B D

Y

node node node

P %

node

Figure 23.07 Conceptual diagram of adding a new node to the end of a linked list

To delete the first node in the list (Figure 23.08), we copy the pointer field of the node to be
deleted into StartPointer.

StartPointer

node A node node

Figure 23.08 Deleting the first node in a linked list

To delete the last node in the list (Figure 23.09), we set the pointer field for the previous node
to the null pointer.

StartPointer

node node node

Figure 23.09 Conceptual diagram of deleting the last node of a linked list

Sometimes the nodes are linked together in order of key field value to produce an ordered
linked list. This means a new node may need to be inserted or deleted from between two
existing nodes.

Chapter 23: Computational Thinking and Problem-solving

Toinsert a new node, C, between existing nodes, B and D (Figure 23.10), we copy the pointer
] field of node B into the pointer field of the new node, C. We change the pointer field of node B
' to point to the new node, C.

StartPointer

—> B e > D > L)

node A node node

node

Figure 23.10 Conceptual diagram of adding a new node into a linked list

To delete a node, D, within the list (Figure 23.11), we copy the pointer field of the node to be
deleted, D, into the pointer field of node B.

StartPointer

Y
-
Q

= B S R > D

node node A node

Figure 23.11 Conceptual diagram of deleting a node within a linked list

Remember that, in real applications, the data would consist of much more than a key field
and one data item. This is why linked lists are preferable to linear lists. When list elements
need reordering, only pointers need changing in a linked list. In a linear list, all data items

would need to be moved.

Using linked lists saves time, however we need more storage space for the pointer fields.

In Chapter 16 we looked at composite data types, in particular the user-defined record type.
We grouped together related data items into record data structures. To use a record variable,
we first define a record type. Then we declare variables of that record type.

We can store the linked list in an array of records. One record represents a node and consists
of the data and a pointer. When a node is inserted or deleted, only the pointers need to
change. A pointer value is the array index of the node pointed to.

Unused nodes need to be easy to find. A suitable technique is to link the unused nodes to
form another linked list: the free list. Figure 23.12 shows our linked list and its free list.

StartPointer
> B D > L %)
node node node
FreeListPtr
> > > —> 1%
y
node node node node

Figure 23.12 Conceptual diagram of a linked list and a free list

Cambridge International AS and A level Computer Science

When an array of nodes is first initialised to work as a linked list, the linked list will be empty.
So the start pointer will be the null pointer. All nodes need to be linked to form the free

list. Figure 23.13 shows an example of an implementation of a linked list before any data is
inserted into it.

List
Data Pointer
[1] 2
StartPointer & 2] 3
[3] 4
FreeListPtr 1 [4] 5
[5] 6
[6] , 7
[7] : %)

Figure 23.13 A linked list before any nodes are used

We now code the basic operations discussed using the conceptual diagrams in Figures 23.05
162312

Create a new linked list

// NullPointer should be set to -1 if using array element with index 0
CONSTANT NullPointer = 0

// Declare record type to store data and pointer

TYPE ListNode

DECLARE Data : STRING
DECLARE Pointer : INTEGER
ENDTYPE

DECLARE StartPointer : INTEGER
DECLARE FreeListPtr : INTEGER
DECLARE List[l : 7] OF ListNode

PROCEDURE InitialiselList

StartPointer <« NullPointer // set start pointer

FreeListPtr « 1 // set starting position of free list

FOR Index « 1 TO 6 // link all nodes to make free list
List[Index].Pointer « Index + 1

ENDFOR

List[7].Pointer <« NullPointer // last node of free list
ENDPROCEDURE

Chapter 23: Computational Thinking and Problem-solving

Insert a new node into an ordered linked list

PROCEDURE InsertNode(NewlItem)
IF FreeListPtr <> NullPointer
THEN // there is space in the array

// take node from free list and store data item
NewNodePtr « FreeListPtr
List[NewNodePtr].Data <« Newltem
FreeListPtr « List[FreeListPtr].Pointer
// find insertion point

ThisNodePtr <« StartPointer // start at beginning of list

WHILE ThisNodePtr <> NullPointer // while not end of list
AND List[ThisNodePtr].Data < NewItem

PreviousNodePtr « ThisNodePtr // remember this node

// follow the pointer to the next node
ThisNodePtr <« List[ThisNodePtr].Pointer
ENDWHILE
IF PreviousNodePtr = StartPointer
THEN // insert new node at start of list
List[NewNodePtr].Pointer « StartPointer
StartPointer <« NewNodePtr
ELSE // insert new node between previous node and this node
List[NewNodePtr].Pointer « List[PreviousNodePtr].Pointer
List[PreviousNodePtr].Pointer <« NewNodePtr
ENDIF
ENDIF
ENDPROCEDURE

After three data items have been added to the linked list, the array contents are as shown in

Figure 23.14.
List
Data Pointer

[1] B 2
StartPointer [2] D 3

[3] L @
FreeListPtr ZI [4] 5

(5] 6

[e]

[7] %

Figure 23.14 Linked list of three nodes and free list of four nodes

Find an element in an ordered linked list

FUNCTION FindNode(DataItem) RETURNS INTEGER // returns pointer to node
CurrentNodePtr <« StartPointer // start at beginning of list
WHILE CurrentNodePtr <> NullPointer // not end of list
AND List[CurrentNodePtr].Data <> Dataltem // item not found
// follow the pointer to the next node
CurrentNodePtr « List[CurrentNodePtr].Pointer
ENDWHILE
RETURN CurrentNodePtr // returns NullPointer if item not found
ENDFUNCTION

Cambridge International AS and A level Computer Science

Delete a node from an ordered linked list

PROCEDURE DeleteNode(DatalItem)
ThisNodePtr <« StartPointer // start at beginning of list
WHILE ThisNodePtr <> NullPointer // while not end of list
AND List[ThisNodePtr].Data <> DataItem // and item not found
PreviousNodePtr <« ThisNodePtr // remember this node
// follow the pointer to the next node
ThisNodePtr <« List[ThisNodePtr].Pointer
ENDWHILE
IF ThisNodePtr <> NullPointer // node exists in list
THEN
IF ThisNodePtr = StartPointer // first node to be deleted
THEN
StartPointer <« List[StartPointer].Pointer
ELSE
List[PreviousNodePtr] <« List[ThisNodePtr].Pointer
ENDIF
List[ThisNodePtr].Pointer <« FreelListPtr
FreeListPtr <« ThisNodePtr y
ENDIF
ENDPROCEDURE

Access all nodes stored in the linked list

PROCEDURE OutputZAllNodes
328 CurrentNodePtr <« StartPointer // start at beginning of list
WHILE CurrentNodePtr <> NullPointer // while not end of list
OUTPUT List[CurrentNodePtr].Data
// follow the pointer to the next node
CurrentNodePtr « List[CurrentNodePtr].Pointer
ENDWHILE
ENDPROCEDURE

TASK23.04

Convert the pseudocode for the linked-list handling subroutines to program code.
Incorporate the subroutines into a program and test them.

Note that a stack ADT and a queue ADT can be treated as special cases of linked lists. The
linked list stack only needs to add and remove nodes from the front of the linked list. The
linked list queue only needs to add nodes to the end of the linked list and remove nodes from
the front of the linked list.

TASK 23.05

Write program code to implement a stack as a linked list. Note that the adding and removing
of nodes is much simpler than for an ordered linked list.

Chapter 23: Computational Thinking and Problem-solving

TASK 23.06

Write program code to implement a queue as a linked list. You may find it helpful to introduce
another pointer that always points to the end of the queue. You will need to update it when
you add a new node to the queue.

23.07 Binary trees

In the real world, we draw tree structures to represent hierarchies. For example, we can draw
a family tree showing ancestors and their children. A binary tree is different to a family tree
because each node can have at most two ‘children’.

In computer science binary trees are used for different purposes. In Chapter 20 (Section
20.05), you saw the use of a binary tree as a syntax tree. In this chapter, you will use an
ordered binary tree ADT (such as the one shown in Figure 23.15) as a binary search tree.

Root node

Left subtree Leaf node Right subtree

Figure 23.15 Conceptual diagram of an ordered binary tree

Nodes are added to an ordered binary tree in a specific way:

Start at the root node as the current node.
Repeat
If the data value is greater than the current node’s data value, follow the right branch.
If the data value is smaller than the current node’s data value, follow the left branch.
Until the current node has no branch to follow.

Add the new node in this position. °

For example, if we want to add a new node with data value D to
the binary tree in Figure 23.15, we execute the following steps:

Start at the root node. o °

Dis smaller than F, so turn left.

D is greater than C, so turn right. o o o

Dis smallerthan E, so turn left.

g A~ W N

There is no branch going left from E, so we add D as a left

child from E (see Figure 23.16). o

This type of tree has a special use as a search tree. Just like

the binary search applied to an ordered linear list, the binary Figure 23.16 Conceptual diagram of adding a node to an
ordered binary tree

Cambridge International AS and A level Computer Science

search tree gives the benefit of a faster search than a linear search or searching a linked list.
The ordered binary tree also has a benefit when adding a new node: other nodes do not
need to be moved, only a left or right pointer needs to be added to link the new node into the
existing tree.

We can store the binary tree in an array of records (see Figure 23.17). One record represents a
node and consists of the data and a left pointer and a right pointer. Unused nodes are linked
together to form a free list.

Tree
RootPointer | @ LeftPointer Data RightPointer
(1] 2
[2] 3
FreePtr i (3] i
[4] 5
[5] 6
[6] 7
[7] %)

Figure 23.17 Binary tree before any nodes are inserted

Create a new binary tree

// NullPointer should be set to -1 if using array element with index 0
CONSTANT NullPointer = 0
// Declare record type to store data and pointers
TYPE TreeNode
DECLARE Data : STRING
DECLARE LeftPointer : INTEGER
DECLARE RightPointer : INTEGER
ENDTYPE
DECLARE RootPointer : INTEGER
DECLARE FreePtr : INTEGER
DECLARE Tree[l : 7] OF TreeNode
PROCEDURE InitialiseTree
RootPointer « NullPointer // set start pointer

FreePtr « 1 // set starting position of free list
FOR Index « 1 TO 6 // link all nodes to make free list
Tree[Index].LeftPointer « Index + 1
ENDFOR
Tree[7] .LeftPointer « NullPointer // last node of free list
ENDPROCEDURE

ey L alE iy, Goatoiin | e

Insert a new node into a binary tree

PROCEDURE InsertNode (NewItem)
IF FreePtr <> NullPointer
THEN // there is space in the array
// take node from free list, store data item and set null pointers
NewNodePtr <« FreePtr
FreePtr « Tree[FreePtr].LeftPointer
Tree[NewNodePtr].Data « Newltem
Tree[NewNodePtr].LeftPointer « NullPointer
Tree[NewNodePtr].RightPointer « NullPointer
// check if empty tree
IF RootPointer = NullPointer
THEN // insert new node at root
RootPointer <« NewNodePtr
ELSE // find insertion point
ThisNodePtr « RootPointer // start at the root of the tree

WHILE ThisNodePtr <> NullPointer // 'while not a leaf node

PreviousNodePtr <« ThisNodePtr // remember this node
IF Tree[ThisNodePtr].Data > NewItem
THEN // follow left pointer
TurnedLeft <« TRUE
ThisNodePtr <« Tree[ThisNodePtr].LeftPointer
ELSE // follow right pointer
TurnedLeft « FALSE
ThisNodePtr <« Tree[ThisNodePtr].RightPointer
ENDIF
ENDWHILE
IF TurnedLeft = TRUE
THEN
Tree[PreviousNodePtr].LeftPointer <« NewNodePtr
ELSE
Tree[PreviousNodePtr].RightPointer <« NewNodePtr
ENDIF
ENDIF
ENDIF
ENDPROCEDURE

Find a node in a binary tree

FUNCTION FindNode(SearchItem) RETURNS INTEGER // returns pointer to node
ThisNodePtr <« RootPointer // start at the root of the tree
WHILE ThisNodePtr <> NullPointer // while a pointer to follow
AND Tree[ThisNodePtr].Data <> SearchItem // and search item not found
IF Tree[ThisNodePtr].Data > SearchItem
THEN // follow left pointer
ThisNodePtr <« Tree[ThisNodePtr].LeftPointer
ELSE // follow right pointer
ThisNodePtr <« Tree[ThisNodePtr].RightPointer
ENDIF
ENDWHILE
RETURN ThisNodePtr // will return null pointer if search item not found
ENDFUNCTION

Chapter 23: Computational Thinking and Problem-solving

331

Cambridge International AS and A level Computer Science

332

TASK 23.07
Write program code to implement a binary search tree.

23.08 Hash tables

If we want to store records in an array and have direct access to records, we can use the
concept of a hash table.

The idea behind a hash table is that we calculate an address (the array index) from the
key value of the record and store the record at this address. When we search for a record,
we calculate the address from the key and go to the calculated address to find the record.
Calculating an address from a key is called ‘hashing’.

Finding a hashing function that will give a unique address from a unique key value is very
difficult. If two different key values hash to the same address this is called a ‘collision’. There
are different ways to handle collisions: '

« chaining: create a linked list for collisions with start pointer at the hashed address

e usingoverflow areas: all collisions are stored in a separate overflow area, known as
‘closed hashing’

« using neighbouring slots: perform a linear search from the hashed address to find an
empty slot, known as ‘open hashing’.

WORKED EXAMPLE 23.01

Calculating addresses in a hash table

Assume we want to store customer records in a 1D array HashTable[0 : n].Each
customer has a unique customer ID, an integer in the range 10001 to 99999.

We need to design a suitable hashing function. The result of the hashing function should be
such that every index of the array can be addressed directly. The simplest hashing function
gives us addresses between 0 and n:
FUNCTION Hash(Key) RETURNS INTEGER

Address « Key MOD(n + 1)

RETURN Address
ENDFUNCTION

For illustrative purposes, we choose n to be 9. Our hashing function is:
Index « CustomerID MOD 10

We want to store records with customer IDs: 45876, 32390, 95312, 64636, 23467. We can
store the first three records in their correct slots, as shown in Figure 23.18.

[0] (1] [2] (3] (4] (5] (6] [7] (8] 9]
32390 95312 45876

Figure 23.18 A hash table without collisions

The fourth record key (64636) also hashes to index 6. This slot is already taken; we have a
collision. If we store our record here, we lose the previous record. To resolve the collision,
we can choose to store our record in the next available space, as shown in Figure 23.19.

Chapter 23: Computational Thinking and Problem-solving

[0] (1] 2] (3] [4] (5] (6] [7] (8] 9]
32390 95312 45876 | 64636

Figure 23.19 A hash table with a collision resolved by open hashing

The fifth record key (23467) hashes to index 7. This slot has been taken up by the previous
record, so again we need to use the next available space (Figure 23.20).

L o] [1] [2] 3] [4] [5] [6] [7] 8] [9]
32390 95312 45876 64636 | 23467

Figure 23.20 A hash table with two collisions resolved by open hashing

When searching for a record, we need to allow for these out-of-place records. We know if
the record we are searching for does not exist in the hash table when we come across an
unoccupied slot.

We will now develop algorithms to insert a record into a hash table and to search for a record
in the hash table using its record key.

e Thehashtableisa 1D array HashTable[0 : Max] OF Record.
e The records stored in the hash table have a unique key stored in field xey.

Insert a record into a hash table

PROCEDURE Insert(NewRecord)
Index « Hash(NewRecord.Key)
WHILE HashTable[Index] NOT empty
Index <« Index + 1 // go to next slot
IF Index > Max // beyond table boundary?
THEN // wrap around to beginning of table
Index « 1
ENDIF
ENDWHILE
HashTable[Index] <« NewRecord
ENDPROCEDURE

Find arecord in a hash table

FUNCTION FindRecord(SearchKey) RETURNS Record
Index <« Hash(SearchKey)
WHILE (HashTable[Index].Key <> SearchKey) AND (HashTable[Index] NOT empty)
Index « Index + 1 // go to next slot
IF Index > Max // beyond table boundary?
THEN // wrap around to beginning of table
Index « 0
ENDIF
ENDWHILE
IF HashTable[Index] NOT empty // if record found
THEN
RETURN HashTable[Index] // return the record
ENDIF
ENDFUNCTION

334

Cambridge International AS and A level Computer Science

23.09 Dictionaries

Areal-world dictionary is a collection of key-value pairs. The key is the term you use to look
up the required value. For example, if you use an English-French dictionary to look up the
English word ‘book’, you will find the French equivalent word ‘livre’. A real-world dictionary is
organised in alphabetical order of keys.

An ADT dictionary in computer science is implemented using a hash table, so that a value can
be looked up using a direct-access method.

Python has a built-in ADT dictionary. The hashing function is determined by Python. For VB
and Pascal, we need to implement our own.

Here are some examples of Python dictionaries:

EnglishFrench = {} # empty dictionary
EnglishFrench["book"] = "livre" # add a key-value pair to the dictionary
EnglishFrench(["pen"] = "stylo"

print(EnglishFrench["book"]) # access a value in the dicﬁionary

alternative method of setting up a dictionary
ComputingTerms = {"Boolean" : "can be TRUE or FALSE", "Bit" : "0 or 1"}

print (ComputingTerms["Bit"])

There are many built-in functions for Python dictionaries. These are beyond the scope of this
book. However, we need to understand how dictionaries are implemented. The following
pseudocode shows how to create a new dictionary.

TYPE DictionaryEntry

DECLARE Key I STERING:
DECLARE Value : STRING
ENDTYPE

DECLARE EnglishFrench[0 : 999] OF DictionaryEntry // empty dictionary

TASK 23.08

Write pseudocode to:

e insert a key-value pairinto a dictionary
o look up avalue in a dictionary.

Use the hashing function from Worked Example 23.01.

Summary

Computational thinking is a problem-solving process.
Standard algorithms include bubble sort, insertion sort, linear search and binary search.

@ Abstract data types (ADTs) include records, stacks, queues, linked lists, binary trees, hash tables
and dictionaries.

Basic operations required for an ADT include creating an ADT and inserting, finding or deleting an
element of an ADT.

BRLL R T S

b e

Wl O N R T ... W &

Chapter 23: Computational Thinking and Problem-solving

Exam-style Questions

1 a Complete the algorithm for a binary search function FindName.

The data being searched is stored in the array Names[0 : 50].
The name to be searched for is passed as a parameter.

FUNCTION FindName(s : STRING) RETURNS INTEGER
Index % =1
First +— 0
Last <« 50

WHILE (Last s= Birst) AND wsseamseesssssssmmmas s s

Middle < (First + Last) DIV 2
IF Names[Middlel]
THEN

Index <« Middle
ELSE

S

[e e e T T .

THEN
Last <« Middle + 1
ELSE

ENDIF
ENDIF
ENDWHILE

ENDFUNCTION

b Thebinary search does not work if the data in the array being searched is

¢ Whatdoes the function FindName return when:
i thename searched for exists in the array

ii the name searched for does not exist in the array?

2 Aqueue Abstract Data Type (ADT) is to be implemented as a linked list of nodes. Each node is a record, consisting

of a data field and a pointer field. The queue ADT also has a FrontofQueue pointer and an EndofQueue pointer
associated with it. The possible queue operations are: JoinQueue and LeaveQueue.

a i Add labelsto the diagram to show the state of the queue after three data items have been added to the

queue in the given order: Apple, Pear, Banana.

ii Add labels to the diagram to show how the unused nodes are linked to form a list of free nodes. This list

has a StartOfFreeList pointer associated with it.

336

Cambridge International AS and A level Computer Science

b

C

i Using program code, declare the record type Node.

ii Write program code to create an array Queue with 50 records of type Node. Your solution should link all
nodes and initialise the pointers FrontOfQueue, EndOfQueue and StartOfFreeList.

The pseudocode algorithm for the queue operation JoinQueue is written as a procedure with the header:

where NewItemis the new value to be added to the queue. The procedure uses the variables shown

PROCEDURE JoinQueue (NewItem)

in the following identifier table:

Identifier Data type Description
NullPointer INTEGER Constantsetto-1
Array to store queue data
STRING Value to be added

Pointer to next free node in array

Pointerto first node in queue

_| Pointer to last node in queue

Pointer to node to be added

i Complete the identifier table.

ii Complete the pseudocode using the identifiers from the table in part (i).

PROCEDURE JoinQueue (NewlItem :

// Report error if no free nodes remaining

IF Sta

rtOfFreelidst = ...ccovevneaeds

THEN

ELS

ENDIF

Report Error
E

// new data item placed in node at start of free list
NewNodePointer <« StartOfFreelist
Queue [NewNodePointer].Data <« NewlItem

// adjust free list pointer

StartOfFreelList <« Queue[NewNodePointer].Pointer
Queue [NewNodePointer]. Pointer « NullPointer

// if first item in queue then adjust front of queue pointer
IF FrontOfQueue = NullPointer

THEN

ENDIF

// new node is new end of queue
(01b1=3 7= SR RRE O SIe].Pointer «
BAJOEQUEUE <= .xiesmwnmimsimmnies

ENDPROCEDURE

