
Learning objectives
By the end of this chapter you should be able to:

• show understanding of how to model a complex system
by only including essential details

• write a binary search algorithm to solve a particular
problem

• show understanding of the conditions necessary for the
use of a binary search

• show understanding of how the performance of a binary
search varies according to the number of data items

• write algorithms to:
• implement an insertion sort
• implement a bubble sort
• find an item in each of the following: linked list, binary

tree, hash table
• insert an item into each of the following: stack, queue,

linked list, binary tree, hash table
• delete an item from each of the following: stack, queue,

linked list

• show understanding that performance of a sort routine
may depend on the initial order of the data and the
number of data items

• show understanding that different algorithms which
perform the same task can be compared by using criteria
such as time taken to complete the task and memory used

• show understanding that an abstract data type (ADT) is a
collection of data and a set of operations on those data

• show understanding that data structures not available
as built-in types in a particular programming language
need to be constructed from those data structures which
are built-in within the language

• show how it is possible for ADTs to be implemented from
another ADT

• describe the following ADTs and demonstrate how they can
be implemented from appropriate built-in types or other
ADTs: stack, queue, linked list, dictionary, binary tree.

Cambridge International AS and A level Computer Science

23.01 What is computational thinking?
We have already been thinking computationally in Chapters 11 to 15. Here is the forma l
definition:

Computational thinking is a problem-solving process where a number of steps are taken in
order to reach a solution, rather than relying on rote learning to draw conclusions without
considering these conclusions.

Computational thinking involves abstraction, decomposition, data modell ing, pattern
recognition and algorithm design.

Abstraction
Abstraction involves filtering out information that is not necessary to solving the problem.
There are many examples in everyday life where abstraction is used. In Chapter 11 (Section
11.01), we saw part of the underground map of London, UK. The purpose of this map is
to help people plan their journey w ithin London. The map does not show a geographical
representation of the tracks of the underground train network.nor does it show the streets
above ground. It shows the stations and which train lines connect the stations. In other
words, the information that is not necessary when planning how to get from Kings Cross St.
Pancras to Westminster is fi ltered out. The essential information we need to be able to plan
our route is clearly represented.

Abstraction gives us the power to deal with complexity. An algorit hm is an abstraction of a
process that takes inputs, execute-s a sequence of steps, and produces outputs. An abstract
data t ype defines an abstract set of values and operations for manipulating those values.

Decomposition
Decomposition means breaking tasks down into smaller pa rts in order to explain a process
more clearly. Decomposition is another word for step-wise refinement (covered in Chapter
12, Section 12.01). This led us to structured programming using procedures and functions
with parameters, covered in Chapter 14 (Section 14.03 to 14.05).

Data modelling
Data modelling involves analysing and organising data. In Chapter 13 we met simple data
types such as integer, character and Boolean. The string data type is a composite type:
a sequence of characters. When we have groups of data items we used one-dimensional
(lD) arrays to represent linear lists and two-dimensional (2D) arrays to represent tables
or matrices. We stored data in text files. In Chapter 10, we used data modelling to design
database tables.

We can set up abs~ract data types to model rea l-world concepts, such as records, queues
or stacks. When a programming language does not have such data types built-in, we can
define our own by building them from existing data types (see Section 23.03). There are more
ways to build data models. In Chapter 27 we cover object-oriented programming where we
build data models by defining classes. In Chapter 29 we model data using facts and rules. In
Chapter 26 we cover random files.

-

Chapter 23: Computational Thinking and Problem-solving

Pattern recognition
Pattern recogn ition means looking for patterns or common solutions to common problems
and exploiting these to complete tasks in a more efficient and effective way. There are many
standard algorithms to solve standard problems, such as insertion sort or bi nary search (see
Section 23.02).

Algorithm design
Algorithm design involves developing step-by-step instructions to solve a problem (see
Chapter 11).

23.02 Standard algorithms

Bubble sort
In Chapter 11, we developed the algorithm for a bubble sort (Worked Example 11.12).

Discussion Point:
What we1·e the essentia l features of a bubble sort?

TASK23.01
Write program code for the most efficient bubble sort algorithm. Assume that the items to be
sorted are stored in a 1D array with n elements.

Insertion sort
Imagine you have a number of cards with a different value printed on each card. How wou ld
you sort these cards into order of increasing value?

You can consider the pile of cards as consisting of a sorted part and an unsorted part. Place
the unsorted cards in a pile on the table. Hold the sorted cards as a pack in you r hand. To
start with only the first (top) card is sorted. The ca rd on the top of the pi le on the table is the
next card to be inserted . The last (bottom) card in your hand is your current card .

Figure 23 .01 shows the sorted cards in your hand as blue and the pile of unsorted cards as
white. The next card to be inserted is shown in red. Each column shows the state of the pile
as the cards are sorted .

Position
number

1
2
3 54
4 17
5 93
6 28

Figure 23.01 Sorting cards

17
93
28

6
47
54

6
17
47
54

6
17
47

6
17
28
47
54
93

Repeat the following steps until al l cards in the unsorted pile have been inserted into the
correct position:

1 Repeat until the card to be inserted has been placed in its correct position.

, __
--- ---- -

Key

i Sorted
Next card

4 Unsorted

I

Cambridge International AS and A level Computer Science

1.1 Compare the current card with the card to be inserted.
1.2 If the card to be inserted is greater than the current card, insert it below the current

card.
1.3 Otherwise, if there is a card above the current card in your hand, make this your new

current card.

1.4 If there is no new current card, place the card to be inserted at the top of the sorted
pile.

What happens when you work through the sorted cards to find the correct position for the
card to be inserted? In effect, as you consider the cards in your hand, you move the current
card down a position. If the value of the card to be inserted is smaller than the last card you
considered, then the card is inserted at the top of the pile (position 1).

This method is known as an insertion sort. It is a standard sort method.

We can write this algorithm using pseudocode. Assume the values to be sorted are stored in
a 10 array, List:

FOR Pointer+- 2 TO NumberOfitems
ItemToBeinserted +- List [Pointer]
Currentite'm +- Pointer - 1 // pointer to last item in sorted part of list
WHILE (List[Currentitem] > ItemToBeinserted) AND (Currentitem > 0)

List [Currentitem + l] +- List [Currentitem] // move current item down
Current i tem +- Currentitem - 1 // look at the item above

ENDWHILE
List[Currentitem + l] +- ItemToBeinserted // insert item

END FOR

TASK23.02

1 Dry-run the insertion sort algorithm using a trace table. Assume the list consists of the
following six items in the order given: 53, 21, 60, 18, 42, 19.

2 Write program code for the insertion sort algorithm. Assume that the items to be sorted are
stored in a 1D array with n elements.

Extension question 23.01
Investigate the performances of the insertion sort and the bubble sort by:

• varying the initial order of the items

• increasing the number of items to be sorted .

Binary search
In Chapter 11 we developed the algorithm for a linear search (Worked Example 11.11). This is
the only way we can systematically search an unordered list. However, if the list is ordered,
then we can use a different technique.

Consider the fol lowing rea l-world example.

If you want to look up a word in a dictionary, you are unlikely to start searching for the word
from the beginning of the dictionary. Suppose you are looking for the word 'quicksort'. You
look at the middle entry of the dictionary (approximately) and find the word 'magnetic'.
'quicksort' comes after 'magnetic', so you look in the second ha lf of the dictionary. Aga in you
look at the entry in the middle of this second half of the dictionary (approximately) and find

-- -- - - ----- - - - - - --- -- - - - - - -

'
\ Chapter 23: Computational Thinking and Problem-solving

t he word 'report '. 'qu ickso rt ' comes before 'report', so you look in t he third quarter. You ca n
keep looking at t he middle ent ry of the part which must con t ain your word , unt il you fi nd the
wo rd . If th e word does not exist in the dictionary, you w ill have no ent ries in the dict ionary left
to find the midd le of.

This method is known as a binary search. It is a standard m ethod .

Binary search: repeated checking of the middle item in an ordered search list and discarding the half
of the list wh ich does not contain the sea rch item

We can write thi s algorithm using pseudocode. Assume the va lues are sorted in ascend ing
order and stored in a 10 ar ray, List of size Max items .

Found +- FALSE
SearchFailed +- FALSE
First +- 1
Last +- Maxitems II set boundaries of sea rch area
WHILE NOT Found AND NOT SearchFailed

Middle +- (First+ Last) DIV 2 II find middle of current search area
IF List [Middle] = Searchitem

THEN
Found +- TRUE

ELSE
IF First >= Last II no search area left

THEN
Sear chFailed +- TRUE

ELSE

ENDIF

I F List[Mi ddle] > Searchitem
THEN II must be in first half

Last +- Middl e - 1 II move upper boundary
ELSE II must be in second half

First +- Middle+ 1 II move lower boundary
ENDIF

ENDIF
ENDWHILE
IF Found = TRUE

THEN
OUTPUT Middle II output position where i tem was found

ELSE
OUTPUT "Item not present in array"

END IF

TASK23.03
Dry-run t he binary search algorithm using a t race ta ble. Assume t he list consists of t he
fo llowing 20 items in the order given: 7, 12, 19, 23, 27, 33, 37, 41, 45, 56, 59, 60, 62, 71, 75, 80, 84,
88, 92, 99.
Sea rch for t he value 60. How many ti mes did you have to execute the Whi l e loop?

Dry-run t he algorithm again, thi s t ime sea rching fo r the va lue 34. How many t imes did you
have to execute the While loop?

, __
- - --- - --

I

I

I

Cambridge International AS and A level Computer Science

Discussion Point:
Compare the binary-search algorithm with the linear-search algorithm. If the array contains
n items, how many times on average do you need to test a value when using a bina ry search
and how many times on average do you need to test a value when using a linear search? Can
you describe how the search time varies with increasing n?

23.03 Abstract data types {ADTs)
An abstract data type is a col lection of data. When we want to use an abstract data type,
we need a set of basic operations:

• create a new instance of the data structure
• f ind an element in t he data structure

• insert a new element into t he data st ructu re
• delete an element from the data st ructure

• access al l elements stored in the data st ructure in a systematic manner.

Abstract data type: a collection of data with associated operations

The re mainder of this chapter describes the following ADTs: stack, queue, linked list, binary
tree, hash table and dictionary. It also demonstrates how they can be implemented from
appropriate bui lt- in types or other ADTs.

23.04 Stacks
What are t he features of a stack in the real world? To make a stack, we pile
items on top of each other. The item t hat is accessib le is the one on top of the
stack. If we try to find an item in the stack and take it out, we are likely to cause
the pi le of items to col lapse.

Figure 23 .02 shows how we can represent a stack when we have added four
items in this order: A, B, C, D. Note that the slots are shown numbered from the
bottom as th is is more intu itive.

8
7
6
5
4
3

D
C

2 B
1 A

Top Of St ackPo inter

Base Of Sta c kPo inte r
The BaseofstackPointer wi ll always point to the first slot in t he stack. The
TopOfStackPoint er wi ll point to the last element pushed onto the stack.
When an element is removed from the stack, t he TopOf St ackPoi nter wi ll
decrease to point to the element now at t he top of the stack. Figure 23.02 A stack

23.05 Queues
What are the features of a queue in t he real world? When peop le form a queue,
t hey join the queue at t he end. People leave t he queue from the fro nt of the
queue. If it is an orderly queue, no-one pushes in between and people don't
leave t he queue from any other position.

Figure 23.03 shows how we can represe nt a queue when five items have joined
the queue in this order: A, B, C, D, E.

---- -~ - - -----

1
2
3
4
5
6
7
8

A
B
C
D
E

FrontOf QueuePointer

EndOf QueuePointer

Figure 23.03 A queue

' J Chapter 23: Computational Thinking and Problem-solving

When the item at the fron t of the queue leaves, we need to move all the
other items one slot forward . Th is would involve a lot of moving of data .
A more efficient way to make use of the slot s is the concept of a 'c ircu lar'
queue. Pointers show where t he front and end of t he queue are. Eve ntually
th e queue will 'wrap around ' to t he beginning. Fi gure 23.04 shows a
circular queue after 11 items have joined and five items have left the
queue.

1
2
3
4
5
6
7
8

I
J
K EndOfQueuePointer

F FrontOfQueuePointer
G
H

23.06 Linked lists Figure 23.04 A circular queue

I ,

In Chapter 11 we used an array as a linear list. In a linear list, the list items are stored in
consecutive locations. This is not always appropriate. Another method is to store an
individual list item in whatever location is ava ilab le and link the ind ividual item into an
ordered sequence using pointers.

An element of a list is ca lled a node. A node can consist of several data items and a pointer,
wh ich is a variable that sto res the address of the node it points to.

A pointer that does not point at anything is called a null pointer. It is usua lly rep resented
by 0 . A variab le t hat stores the address of the first element is ca lled a start pointer.

Node: an element of a list

Pointer: a variable that stores the address of the node it points to

Null pointer: a pointer that does not point at anything

Start pointer: a variable that stores the address of the first element of a linked list

In Figu re 23.05, the data value in t he node box represents the key field of that node. There are
li kely to be many data items associated with each node. The arrows represent t he pointe rs.
It does not show at wh ich address a node is stored, so t he d iagram does not give the value of
the pointer, only where it conceptually links to.

StartPointer

I I ·I.____ _8 ---'------'I I ·l.___0____.______.I I > .___I -L ~I 0 I
node node node

Figure 23.05 Conceptual diagram of a linked list

Ir-----------

I

•

Cambridge International AS and A level Computer Science

A new node, A, is inserted at the beginn ing of the list. The content of s t a rtPo int er is copied
into the new node's pointer field and star tpointer is set to point to the new node, A.

StartPointer

. - - -- ---~ B D L 0 , ,

, , node node node

,~
A

node

Figure 23.06 Conceptual diagram of adding a new node to the beginning of a linked list

In Figure 23.07, a new node, P, is inserted at t he end of the list. The pointer field of node L
points to the new node, P. The pointer field of the new node, P, contains the nu ll pointe r.

StartPointer

B D L

node node node

p 0
node

Figure 23.07 Conceptual diagram of add ing a new node to the end of a linked list

To delete the first node in the list (Figure 23 .08), we copy the pointer fie ld of the node to be
deleted into St artPo inter.

StartPointer

I 1·---+--~~-8 ~I I ·'----.--I D~I I ·~I -L ~I 0 I
'-· _______ no_d_e ______ ~t node node

Figu re 23.08 Deleting the first node in a linked list

To delete the last node in the list (Figu re 23.09), we set the pointer field for the previous node
to the nu ll pointer.

StartPointer

B D

node node node

Figure 23.09 Concept ual diagram of deleting the last node of a linked list

Somet imes t he nodes are lin ked together in order of key field value to produce an ordered
linked list. This means a new node may need to be inserted or deleted from between two
existi ng nodes.

t. Chapter 23: Computational Thinking and Problem-solving

'
'

'

To insert a new node, C, between existing nodes, Band D (Figure 23.10), we copy the pointer
field of node B into the pointer field of the new node, C. We change the pointer field of node B
to point to the new node, C.

StartPointer

- B -- - -----1 D I I ,

node II' node node

,.

C

node

Figure 23.10 Conceptual diagram of adding a new node into a linked list

To delete a node, D, within the list (Figure 23.11), we copy t he pointer field of the node to be
deleted , D, into the pointer field of node B.

StartPointer

I ·I B I ---1-- ---1 D I I ·I L I 01
node I node j node

Figure 23.11 Conceptual diagram of deleting a node with in a linked list

Remem ber t hat , in real applica tions, t he data wou ld consist of much more than a key field
and one data item. This is why linked lists are preferable to li nea r lists. When list elements
need reordering, on ly pointers need cha nging in a linked list. In a linear list, all data items
wou ld need to be moved.

Using lin ked lists saves t ime, however we need more storage space for the pointer fields.

In Chapter 16 we looked at com posite data types, in particular the user-defined record type.
We grouped together related data items into record data structures. To use a record variable,
we first define a record type. Then we declare variab les of t hat record type.

We ca n store the linked list in an array of records. One record represents a node and consists
of the data and a pointer. When a node is inserted or deleted, only the pointers need to
change. A pointer va lue is the array index of t he node pointed to.

Unused nodes need to be easy to f ind. A suitable technique is to link t he unused nodes to
form anot her li nked list: t he free list. Figure 23.12 shows our linked list and its free list.

node

FreelistPtr

node node node node

Figure 23.12 Conceptual diagram of a linked list and a free list

-- --- -- - - --------

•

Cambridge International AS and A level Computer Science

When an array of nodes is first initialised to work as a linked list, t he lin ked list will be empty.
So the start pointer will be the null pointer. All nodes need to be linked to form the free
list. Figure 23.13 shows an example of an imp lementation of a linked list before any data is
inserted into it.

List
Data Pointer

[1] 2

StartPointer 0 [2] 3

[3] 4

FreeListPtr D [4] 5

[5] 6

[6] 7

[7] 0

Figure 23.13 A linked list before any nodes are used

We now code t he basic operations discussed using the conceptual diagrams in Figures 23.05
to 23.12.

Create a new linked list
II NullPointer should be set to -1 if using array element with index O
CONSTANT NullPointer = 0
II Declare record type to store data and pointer
TYPE ListNode

DECLARE Data STRING
DECLARE Pointer INTEGER

ENDTYPE
DECLARE StartPointer : INTEGER
DECLARE FreeListPtr : INTEGER
DECLARE List[l : 7] OF ListNode

PROCEDURE InitialiseList
StartPointer +-- NullPointer
FreeListPtr +-- 1
FOR Index +-- 1 TO 6

II set start pointer
II set starting position of free list
II link all nodes to make free list

List [Index] . Pointer +-- Index + 1
END FOR
List [7]. Pointer +-- Null Pointer I I last node of free list

END PROCEDURE

Chapter 23: Computational Thinking and Problem-solving

Insert a new node into an ordered linked list
PROCEDURE InsertNode(Newitem)

IF FreeListPtr <> NullPointer
THEN II there is space in the array

END IF

II take node from free list and store data item
NewNodePtr +- FreeListPtr
List [NewNodePtr] .Data +- Newitem
FreeListPtr +- List [FreeListPtr] . Pointer
II find insertion point

ThisNodePtr +- Start Pointer
WHILE ThisNodePtr <> NullPointer

AND List[ThisNode Ptr] .Data

II start at beginning of list
II while not end of list

< Newitem
PreviousNodePtr +- ThisNodePtr II remember this node

II follow the pointer to the next node
ThisNodePtr +- List [ThisNodePtr]. Pointer

ENDWHILE
IF PreviousNodePtr = StartPointer

THEN II insert new node at start of list
List [NewNodePtr]. Pointer +- StartPointer
StartPointer +- NewNodePtr

ELSE II insert new n o de between previous node and this node
List [NewNodePtr]. Pointe r +- List [PreviousNodePtr]. Pointer
List [PreviousNodePtr] . Pointer +- NewNodePtr

ENDIF

END PROCEDURE

After t hree data items have been added to t he linked list , the array content s are as shown in
Figure 23.14.

List
Data Pointer

[1] B 2

Start Pointer L] [2] D 3

[3] L 0

FreeListPtr 8 [4] 5

[5] 6

[6] 7

[7] 0

Figure 23.14 Linked list of three nodes and free list of four nodes

Find an element in an ordered linked list
FUNCTION FindNode(Dataitem) RETURNS INTEGER II returns pointer to node

CurrentNodePtr +- StartPointer II start at beginning of list
WHILE CurrentNodePtr <> NullPointer II not end of list

AND List[CurrentNodePtr].Data <> Dataitem II item not found
II follow the pointer to the next node
CurrentNodePtr +- List [CurrentNodePtr]. Pointer

ENDWHILE
RETURN CurrentNodePtr II returns NullPointer if item not found

END FUNCTION

•

Cambridge International AS and A level Computer Science

Delete a node from an ordered linked list
PROCEDURE DeleteNod e (Dataite m)

ThisNodePtr +- StartPointer
WHILE ThisNodePtr <> NullPointer

II start at beginning of list
II while not end o f list

AND List[ThisNodePtr] .Data <> Dataitem II and item not found
Previo usNodePtr +- ThisNodePtr II remember t his node

II follow the pointer to the next node
ThisNodePtr +- Li st [ThisNodePtr] . Pointer

ENDWHILE
IF ThisNodePtr <> NullPointer II n o d e exists in list

THEN
IF ThisNodePtr = StartPointe r II first node to be deleted

THEN
Start Pointer +- List [StartPointer] .Pointer

ELSE
List [PreviousNodePtr] +- List [ThisNodePtr]. Pointer

ENDIF

END IF

Li s t [ThisNode Ptr]. Po inter <- FreeListPtr
FreeListPtr +- ThisNodePtr

END PROCEDURE

Access all nodes stored in the linked list
PROCEDURE OutputAllNo des

CurrentNodePtr +- StartPointer II start a t beginning of list
WHILE CurrentNodePtr <> NullPointe r II while not end of list

OUTPUT List[CurrentNodePtr] .Data
II follow the pointer to the next node
CurrentNodePtr +- List~urrentNodePtrj .Pointer

ENDWHILE
ENDPROCEDURE

TASK23.04
Convert the pseudocode for the linked-l ist handl ing subroutines to program code.
Incorporate the subrout ines into a program and test them.

Note t hat a stack ADT and a queue ADT can be treated as specia l cases of li nked lists. Th e
li nked list st ack on ly needs to add and remove nodes from the front of t he li nked list. The
li nked list queue only needs to add nodes to th e end of t he linked list and remove nodes from
the front of t he li nked list.

TASK23.05
Write program code to implement a stack as a linked list. Note that t he adding and removi ng
of nodes is much simpler than fo r an ordered linked list.

Chapter 23: Computational Thinking and Problem-solving

TASK23.06
Write program code to implement a queue as a linked list. You may find it helpful to introduce
another pointer that always points to the end of the queue. You will need to update it when
you add a new node to the queue.

23.07 Binary trees
In the real world, we draw tree structures to represent hierarchies . For example, we can draw
a fami ly tree showing ancestors and thei r children . A binary tree is different to a family tree
because each node can have at most two 'children'.

In computer science binary trees are used for different purposes. In Chapter 20 (Section
20.05), you saw the use of a binary tree as a syntax tree. In this chapter, you w ill use an
ordered binary tree ADT (such as the one shown in Figure 23 .15) as a binary sea rch tree.

Root node

Left subtree Leaf node

Figure 23.15 Conceptual diagram of an ordered binary tree

Nodes are added to an ordered binary t ree in a specific way:

Sta rt at the root node as t he current node.

Repeat

Right subtree

If the data value is greater t han the current node's data value, follow the right branch .

If the data value is smaller than the current node's data value, follow the left branch .

Until the current node has no branch to follow.

Add the new node in this posit ion .

Fo r example, if we want to add a new node with data value D to
the binary tree in Figure 23.15, we execute the fol lowing steps:

1 Start at the root node.

2 Dis smaller than F, so turn left.

3 Dis greater than C, so turn right.

4 Dis smaller than E, so turn left.

5 There is no branch going left from E, so we add Das a left
chi ld from E (see Figure 23.16) .

s

This type of tree has a special use as a search tree. Just like
the binary search applied to an ordered linear list, the binary Figure 23.16 Conceptual diagram of adding a node to an

ordered binary tree

I

Cambridge International AS and A level Computer Science

search t ree gives the benefi t of a faste r search than a linea r sea rch or sea rching a li nked list.
The ordered binary tree also has a benefi t when adding a new node: ot her nodes do not
need to be moved, only a left or right pointer needs to be added to link the new node into the
existing t ree.

We ca n store t he binary tree in an array of records (see Figure 23 .17). One record represents a
node an d consists of the data and a left pointer and a right pointer. Unused nodes are linked
together to form a free list.

RootPointer 0

FreePtr

[l]

[2]

(3]

[4]

[5]

[6]

[7]

Tree

LeftPointer Data

2

3

4

5

6

7

0

Figure 23.17 Binary tree before any nodes are inserted

Create a new binary tree

RightPointer

II NullPointer should be set to -1 if u sing a r ray element with index O
CONSTANT NullPointer = 0
II Declare record type to store data and pointers
TYPE TreeNo de

DECLARE Data : STRING
DECLARE LeftPointer : INTEGER
DECLARE RightPoint er : INTEGER

END TYPE
DECLARE RootPointer : INTEGER
DECLARE FreePtr : INTEGER
DECLARE Tree[l : 7] OF TreeNode
PROCEDURE InitialiseTree

RootPointer <- NullPointer II set start pointer
FreePtr <- 1 I I set starting position of free list
FOR Index <- 1 TO 6 II link all nodes to make fre e list

Tree [Index] . LeftPointer <- Index + 1
END FOR
Tree [7] .LeftPointer <- NullPointer I I last node of free list

END PROCEDURE

Chapter 23: Computational Thinking and Problem-solving

Insert a new node into a binary tree
PROCEDURE Ins er t No de (Newitem)

IF FreePtr <> NullPointer
THEN II there is space in the array

ENDIF

II take node from free list, store data item and set null pointers
NewNodePtr <- FreePtr
FreePtr <- Tree [FreePtr] . LeftPointer
Tree[NewNodePtr] .Data <- Newitem
Tree[NewNodePtr] .LeftPo inter <- NullPointer
Tree [NewNodePtr] .RightPointer <- NullPointer
II check if empty tree
IF RootPointer = NullPointe r

THEN II insert new node at root
RootPointer <- NewNodePtr

ELSE II find insertion point

ENDIF

ThisNodePtr <- RootPointer II start at the root of the tree
WHILE ThisNodePtr <> NullPointer II ·while not a leaf node

PreviousNodePtr <- ThisNodePtr II remember this node
IF Tree[ThisNodePtr] .Data > Newitem

THEN II f o llow left pointer
TurnedLeft <- TRUE
ThisNodePtr <- Tree [ThisNodePtr] .LeftPointer

ELSE II follow right pointer
TurnedLeft <- FALSE
ThisNodePtr <- Tree [ThisNodePtr] .RightPointer

ENDIF
ENDWHILE
IF TurnedLeft = TRUE

THEN
Tree [PreviousNodePtr] .Left Pointer <- NewNodePtr

ELSE
Tree[PreviousNodePtr] .RightPointer <- NewNodePtr

ENDIF

END PROCEDURE

Find a node in a binary tree
FUNCTION FindNode(Searchitem) RETURNS INTEGER II returns pointer to node

ThisNodePtr <- RootPointer II start at the root of the tree
WHILE ThisNodePtr < > NullPointer II while a pointer to follow

AND Tree[ThisNodePtr].Data <> Searchitem II and search item not found
IF Tree[ThisNodePtr].Data > Searchitem

THEN II follow left pointer
ThisNodePtr <- Tree [ThisNodePtr] .LeftPointer

ELSE II follow right pointer

ENDIF
ENDWHILE

ThisNodePtr <- Tree [ThisNodePtr] .RightPointer

RETURN ThisNodePtr II will return null pointer if search item not found
END FUNCTION

-- -----------

•

•

Cambridge International AS and A level Computer Science

TASK23.07
Write program code to implement a binary search tree.

23.08 Hash tables
If we want to sto re records in an array and have direct access to records, we can use the
concept of a hash table.

The idea beh ind a hash tab le is that we calculate an address (the array index) from the
key value of the record and store the record at this address. When we search for a record,
we calculate the address from the key and go to the calculated address to find the record.
Calculating an address from a key is called 'hashing'.

Finding a hashing function that wi ll give a unique address from a unique key va lue is very
difficult. If two different key values hash to the same address th is is called a 'collision'. There
are different ways to handle collisions:

• chaining: create a linked list for collisions with start po inter.at the hashed address

using overflow areas: all coll isions are stored in a separate overflow area, known as
'closed hashing'

using neighbouring slots: perfo rm a linear search from the hashed address to find an
empty slot, known as 'open hashing' .

WORKED EXAMPLE 23.01

Calculating addresses in a hash table
Assume we want to store customer records in a l D array HashTable [o : n l. Each
customer has a unique customer ID, an integer in the range 10001 to 99999.

We need to design a su itable hashing function. The result of the hashing fu nction should be
such that every index of the array can be addressed d irectly. The simplest hashing function
gives us addresses between O and n:

FUNCTION Hash (Key) RETURNS INTEGER
Address <- Key MOD(n + 1)
RETURN Address

ENDFUNCTION

For illustrative purposes, we choose n to be 9. Our hash ing function is:

Index<- CustomerID MOD 10

We want to store records with customer IDs: 45876, 32390, 95312, 64636, 23467. We can
store the first three reco rds in their correct slots, as shown in Figure 23.18.

[OJ [lJ [2J [3J [4J [SJ [6] [7] [8] [9]

132390 1 195312 1 145876

Figure 23.18 A hash table without coll isions

The four th record key (64636) also hashes to index 6. This slot is already ta ken; we have a
co llision. If we store our reco rd here, we lose the previous record. To resolve the collis ion,
we can choose to store our record in the next available space, as shown in Figure 23.19.

-

(
1 Chapter 23: Computational Thinking and Problem-solving

[OJ [lJ [2] [3J [4J [SJ [6] [7] [8J [9J

132390 195312 I 45876 64636

Figure 23.19 A hash table with a collision resolved by open hashing

The fi fth record key (23467) hashes to index 7. This slot has been taken up by the previous
record, so again we need to use the next avai lable space (Figure 23.20).

[OJ [lJ [2] [3J [4J [SJ [6J [7J [8] [9J

1 32390 1 1 95312 1 1 45876 1 64636 23467

Figure 23.20 A hash table with two collisions resolved by open hashing
'

When searching fo r a record , we need to allow for these out-of-place reco rds. We know if
the reco rd we are searching fo r does not exist in t he hash table when we come across an
unoccupied slot.

We will now develop algorithms to insert a record into a hash table and to search fo r a reco rd
in the hash table using its record key.

The hash ta ble is a 1D array HashTable [O : Max) OF Record.

• The records stored in the hash table have a unique key stored in fi eld Key.

Insert a record into a hash table
PROCEDURE Insert (NewRecord)

Index +- Hash (NewRecord.Key)
WHILE HashTable[Index) NOT empty

Index +- Index + 1 I I go to next slot
IF Index > Max II beyond table b oundary?

THEN II wrap around to beginning of table
Index +- 1

ENDIF
ENDWHILE
HashTable[Index) +- NewRecord

END PROCEDURE

Find a record in a hash table
FUNCTION FindRecord(Searc hKey) RETURNS Record

Index +- Hash (SearchKey)
WHILE (HashTable[Index).Key <> SearchKey) AND (HashTable[Index) NOT empty)

Index +- Index+ 1 II go to next slot
IF Index > Max II beyond table boundary?

THEN II wrap around to beginning of table
Index +- O

ENDIF
ENDWHILE
IF HashTable[Index) NOT empty II if record found

THEN
RETURN HashTable[Index) II return the record

ENDIF
END FUNCTION

•

Cambridge International AS and A level Computer Science

23.09 Dictionaries
A rea l-world dictionary is a co llection of key-va lue pairs. The key is t he term you use to look
up t he required va lue. For example, if you use an Engl ish - French di ctionary to look up t he
English word 'book', you wi ll fi nd t he French equiva lent word 'livre'. A rea l-world dicti onary is
organised in alphabet ica l order of keys.

An ADT dictionary in co mputer science is implemented using a hash table, so t hat a value ca n
be looked up using a direct-access method.

Python has a built-in ADT d ictionary. The hashing fu nction is determined by Pyt hon. For VB
and Pasca l, we need to implement our own.

Here are some exa mples of Python dictionaries:
EnglishFrench = {} # empty dictionary
EnglishFrench["boo k"] = "liv re" # add a key-value pair to the dictionary
EnglishFrench["pen"] = "stylo"

print (EnglishFrench ["book"]) # acc ess a value in the dictionary

alternative method of setting up a dictionary
ComputingTerms = {"Boo lean" : "can be TRUE o r FALSE", "Bit"

print (Computing Terms ["Bit "])

"0 o r 1" }

There are many built- in fu nctions for Pyth on dictionaries. These are beyo nd the scope of th is
book. However, we need to understand how d ictionaries are implemented . The fo llowing
pseudocode shows how to create a new dictionary.

TYPE DictionaryEntry
DECLARE Key STRING
DECLARE Value : STRING

ENDTYPE
DECLARE EnglishFrenc h[O : 999] OF DictionaryEntry II empty dictionary

TASK23.08
Write pseudocode to:

insert a key-value pair into a dict ionary
look up a value in a dictionary.

Use the hashing function from Worked Example 23.01.

• Standard algorithms include bubble sort, insertion sort, linear search and binary search.

• Abstract data types (ADTs) include records, stacks, queues, linked lists, binary trees, hash tables
and dictionaries.

• Basic operations required for an ADT include creating an ADT and inserting, finding or deleting an
element of an ADT.

~·

l
I

I

r.
[,

· Chapter 23: Computational Thinking and Problem-solving

Exam-style Questions
1 a Comp lete the algorithm for a binary search funct ion FindName.

The data being searched is stored in the array Names [O : 50].

The name to be searched for is passed as a parameter.

FUNCTION FindName (s : STRING) RETURNS INTEGER
Index +- -1
First +- O
Last +- 50
WHILE (L ast >= First) AND .. .

Middle +- (First + Last) DIV 2
IF Names[Middle] = s

THEN
Index +- Middle

ELSE
IF

ENDIF
ENDWHILE

END FUNCTION

THEN
Last +- Middle+ 1 ·

ELSE

ENDIF

b The binary search does not work if the data in t he array being sea rched is.

c What does the function FindName return when :

the name searched for exists in the array

ii t he name searched for does not exist in the array7

2 A queue Abstract Data Type (ADT) is to be imp lemented as a linked li st of nodes. Each node is a record, consisting
of a data field and a pointer field. The queue ADT also has a FrontOfQueue pointer and an EndOfQueue pointer
associated with it. The possible queue operat ions are: JoinQueue and LeaveQueue.

a Add labels to the diagram to show the state of t he queue after three data items have been added to the
queue in the given order: Apple, Pear, Ba nana .

I I

I I

I I
I I

I I
ii Add labels to the diagram to show how the unused nodes are li nked to form a list of free nodes. This list

has a StartOfFreeList po inter associated with it.

[3)

[l]

[2]

[5)

[2]

I

Cambridge International AS and A level Computer Science

b i Using program code, decla re the record type Node.

ii Write program code to create an array Queue with 50 records of type Node. Your solution should link all
nodes and initia lise the pointers FrontOfQueue , EndOfQueue and StartOfFreeList .

c The pseudocode algorithm for the queue operation JoinQueue is written as a procedure with the header:

PROCEDURE JoinQueue(Newitem)

where Newitem is the new va lue to be added to the queue. The procedu re uses the variables shown
in the following identifier tab le:

Identifier Data type Description
Null Pointer INTEGER Co nstant set to - 1

Array to store queue data
STRING Va lue to be added

Pointer to next free node in array
Pointer to first node in queue

Pointer to last node in queue

Pointer to node to be added

Complete the ident ifier table.

ii Complete the pseudocode using the identifiers from the table in part (i).

PROCEDURE JoinQueue(Newitem : STRING)
II Report error if no free nodes remaining
IF StartOfFreeList =

THEN
Report Error

ELSE

ENDIF

II new data item placed in node at start of free list
NewNodePointer +-- StartOfFreeList
Queue [NewNodePointer] .Data +-- Newitem
II adjust f r ee list pointer
StartOfFreeList +-- Queue [NewNode Pointer]. Pointer
Queue [NewNodePo inter]. Pointer +-- Null Pointer
II if first item in queue then adjust front of queue pointer
IF FrontOfQueue = NullPointer

THEN
. . . . • . • • • . • . . • +- •.••••..•.•...

ENDIF
II new node is new end of queue
Queue[...] . Pointer +-- ••••••...••••••••••••

EndOfQueue +-- •••.•••••••••••• •• ••• • •••••••••••••••••••••••• .

END PROCEDURE

[3]

[7]

[7]

[6]

.....

- ----- - - ---

