
Learning objectives
By the end of this chapter you should be able to:

• show understanding of how an operating system can
maximise the use of resources

• describe the ways in which the user interface hides the
complexities of the hardware from the user

• show understanding of processor management including:
the concepts of a process, multitasking and an interrupt
and the need for scheduling

• show understanding of paging for memory management
including: the concepts of paging and virtual memory, the
need for paging, how pages can be replaced and how disk
thrashing can occur

• show understanding of the concept of a virtual machine
and give examples of the role of virtual machines and
their benefits and limitations

/

/
/

• show understanding of how an interpreter can execute
programs without producing a translated version

• show understanding of the various stages in the
compilation of a program

• show understanding of how the grammar of a language
can be expressed using syntax diagrams or Backus-Naur
Form (BNF) notation

• show understanding of how Reverse Polish Notation
(RPN) can be used to carry out the evaluation of
expressions.

• .

Cambridge International AS and A level Computer Science

20.01 The purposes of an operating system (OS)
Before considering the purposes of an operating system (OS), we need to present the context
in which it runs. A computer system needs a program that begins to run when the system is
first switched on. At this stage, the operating system programs are stored on disk so there
is no operat ing system. However, the computer has stored in ROM a basic input output
system (BIOS) which starts a bootstrap program. It is this bootstrap program that loads the
operating system into memory and sets it running.

An operating system can provide facilities to have more than one program stored in memory.
On ly one program can access the CPU at any given time but others are ready when the
opportun ity arises. This is described as multi-programming. This will happen for one single
user. Some systems are designed to have many users simultaneously logged in . This is a
time-sharing system.

The pu rposes of an operating system ca n usefully be considered from two viewpoints:
an internal viewpoint and an external viewpoint. The internal viewpoint concerns how
the activities of the operating system are organised to best use the resou rces ava ilable.
The externa l viewpo int concerns the facilities made ava ilable for system usage. Chapter 7
(Section 7.02) contained a categorised summary of the various activities that an operat ing
system engages in. This chapter discusses some of them in more detail.

Resource management
The three fundamental resources in a computer system are:

• the CPU

• the memory

• the 1/0 (i nput/output) system.
Resource management relating to the CPU concerns scheduling to ensure efficient usage.
The methods used are described in Section 20.03. These methods consider the CPU as a
single unit; specific issues re lating to a multi processor system are not considered. Resource
management relating to the memory concerns optimum usage of main memory.

The 1/0 system does not just re late to input and output that directly involves a computer
user. It also includes input and output to storage devices while a program is running. Figure
20.01 shows a schemat ic diagram that illustrates the structure of the 1/0 system.

Disk Screen Keyboard Printer

Disk Screen Keyboard Printer
device device device device
driver driver driver driver

CPU Memory

Figure 20.01 Main components associated with the 1/0 system

The bus stru cture in Figure 20.01 shows that there can be an option for t he transfer of data
between an 1/0 device and memory. The operati ng system can ensure that 1/0 passes via the

- - - -

I

f

Chapter 20: System Software

CPU but for large quantities of data the operating system can ensure direct transfer between
memory and an 1/0 device.

Device Data rate Time for transfer of 1 byte To understand the issues associated with 1/0 management,
some discussion of timescales is required . It must be
understood that one second is a very long time for

Keyboard 10 Bps 0.1 S

Screen so MBps 2 X 10-B S

Disk s MBps 2 X 10-7 S
a computer system. A CPU typically operates at GHz
frequencies. One second sees more than one trillion clock
cycles. Some typical speeds for 1/0 are given in Table 20.01. Table 20.01 Typical rates and times for data tra nsfer
The slow speed of 1/0 compared to a typ ical CPU clock
cycle shows that management of CPU usage is vital to ensure that the CPU does not remain
idle whi le 1/0 is taking place.

Operating system facilities provided for the user
The user interface may be made available as a command line, a graphical display or a voice
recognition system but the function is always to allow the user to interact with running
programs. When a program invo lves use of a device, the operating system provides the
device driver: the user just expects the device to work. (You might, however, wish to argue
that printers do not always quite fit this description.)

The operating system will provide a file system for a user to store data and programs. The
user has to choose filenames and organise a directory (folder) structure but the user does not
have to organise the physical data storage on a disk. If the user is a programmer, the operating
system supports the provision of a programming environment. This allows a program to be
created and run without the programmer being famil iar with how the processor functions.

When a program is runn ing it can be considered to be a type of user. The operating system
provides a set of system calls that provide an interface to the services it offers. For instance, if
a program specifies that it needs to read data from a fi le, the request for the file is converted
into a system call that causes the operating system to take cha rge, find the file and make it
available to the program. An extension of this concept is when an operating system provides
an application programming interface (API). Each API call fulfils a specific function such as
creating a screen icon. The API might use one or more system ca lls. The API concept aims to
provide portability for a program.

Operating system structure
An operating system has to be structured in order to provide
a platform for both resource management and the provision
offacil it ies for users. The logical structure of the operating
system provides two modes of operat ion. User mode is the
one available for the user or an application program. The
alternative has a number of different names of which the
most often used are 'privileged mode' or 'kernel mode'. The
difference between the two is that kernel mode has sole
access to part of the memory and to certain system functions
that user mode cannot access.

It is now norma l for the operating system to be separated
into a kernel which runs all of the t ime and the remainder
which runs in user mode. One possibility then is to use a
layered structure as illustrated in Figure 20.02.

User interface

Application programs

Utilities

Kernel

Hardware interface

Figure 20.02 Layered structure fo r an operating system

I

Cambridge International AS and A level Computer Science

In this model, application programs or utility programs could make system calls to the
kernel. However, to work properly each higher layer needs to be fully serviced by a lower
layer (as in a network protocol stack).

This is hard to ach ieve in practice. A more flexible approach uses a modular structure,
illustrated in Figure 20.03. The structure works by the kernel calling on the individual services
when requ ired . It could possibly be associated with a micro-kernel structure where the
functionality in the kernel is reduced to the absolu te min imum.

Kernel

Figure 20.03 Modular structure for an operating system

20.02 Process scheduling
Programs that are available to be run on a computer system are ini tially stored on disk. In
a time-sharing system a user cou ld submit a program as a 'job' which would include the
program and some instructions about how it should be run. Figure 20.04 shows an overview
of the components involved when a program is run.

A long-term or high-level scheduler program controls the selection of a program stored on disk
to be moved into main memory. Occasionally a program has to be taken back to disk due to the
memory getting overcrowded. This is controlled by a medium-term scheduler. When the program
is installed in memory, a short-term or low-level scheduler controls when it has access to the CPU.

EJ-• ·1._____________. Memo,y ~I• ·1._____________. CPU

Figure 20.04 Components involved in running a program

Process states
In Chapter 7 (Section 7.02), it was stated that a process can be defined as 'a program being
executed'. This definition is perhaps better slightly modified to include the state when the
program first arrives in memory. At this stage a process control block (PCB) can be created
in memory ready to receive data when the process is executed. Once in memory the state of
the process can change.

The transitions between the states shown in Figure 20.05 can be described as follows:

• A new process arrives in memory and a PCB is created; it changes to the ready state.

• A process in the ready state is given access to the CPU by the dispatcher; it changes to the
runn ing state.

• A process in the running sta te is halted by an interrupt; it returns to the ready state.

• A process in the running state cannot progress until some event has occu rred (1/0 perhaps);
it changes to the wa iting state (sometimes called the 'suspended' or 'blocked' state).

,---- -- - ---

1
, Chapter 20: System Software

• A process in the waiting state is notified that an event is completed; it returns to the ready
state.

• A process in the running state completes execution; it changes to the term inated state.

Figure 20.05 The five states defined for a process being executed

It is possible for a process to be separated into different parts for execution. The separate parts
are called threads. If this has happened, each thread is handled as though it were a process.

Process: a program in memory that has an associated process control block

Process control block (PCB): a complex data structure containing all data relevant to the running of
a process

Thread: part of a process being executed

Interrupts
Some interrupts are caused by errors that prematurely terminate a running process.
Otherwise there are two reasons for interrupts:

Processes consist of alternating periods of CPU usage and 1/0 usage. 1/0 takes far too long
for the CPU to remain idle waiting for it to complete. The interrupt mechanism is used
when a process in the running state makes a system call requir ing an 1/0 operation and
has to change to the wa iting state.

• The scheduler decides to halt the process for one of severa l reasons, discussed in the next
section ('Scheduling algorithms').

Whatever the reason for an interrupt, the OS kernel must invoke an interrupt-handling
routine. This may have to decide on the priority of an interrupt. One required action is
that the current values stored in registers must be recorded in the process control block.
This allows the process to continue execut ion when it eventually returns to the running
state.

Discussion Point:
What would happen if an interrupt was received while the interrupt-handling routine was
being executed by the CPU? Does this require a priority being set for each interrupt?

•

Cambridge International AS and A level Computer Science

Scheduling algorithms
Although the long-term or high-level scheduler will have decisions to make when choosing
which program should be loaded into memory, we concentrate here on the options for the
short-term or low- level scheduler.

A schedu ling algorithm ca n be preemptive or non-preemptive. A preemptive algorit hm
can halt a process that wou ld otherwise continue runn ing undisturbed. If an algorithm is
preemptive it may involve prioritising processes.

The simplest possible algorithm is first come first served (FCFS). This is a non-preemptive
algorithm and can be implemented by placing the processes in a first-in first-out (FI FO)
queue. It will be very inefficient if it is the only algorithm employed but it can be used as part
of a more complex algorithm.

A round-rob in algorithm allocates a t ime slice to each process and is therefore preemptive,
because a process will be halted when its time slice has run out. It can be implemented as a
FIFO queue. It normal ly does not invo lve prioritising processes . Howev_er, if sepa rate queues
are created for processes of different priorities then each queue could be schedu led using a
round-robin algorithm.

A priority-based scheduling algorithm is more complicated. One reason for this is that every
ti me a new process enters t he ready queue or when a running process is halted, the priorities
for the processes may have to be re -evaluated . The other reason is that whatever scheme is
used to judge priority level it will require some computation . Possible cri teria are:

• est imated time of process execution
• est imated remaining t ime for execution

length of t ime already spent in the ready queue
• whether t he process is 1/0 bound or CPU bound.

More than one of these criteria might be considered. Clearly, estimating a t ime for execution
may not be easy. Some processes require extensive 1/0, for instance printing wage slips for
employees. There is very little CPU usage for such a process so it makes sense to al locate it
a high priority so t hat the small amount of CPU usage can take place. The process wil l t hen
change to the wait ing state wh ile the printing takes place.

20.03 Memory management
The term memory management embraces a number of aspect s. One aspect concerns the
provision of protected memory space for t he OS kernel. Another is that the loading of a
program into memory requ ires defining the memory addresses for the program itself, for
associated procedures and for the data requi red by the program. In a mult iprogramming
system, this might not be straight fo rward. The storage of processes in main memory can get
fragmented in the same way as happens for files stored on a hard disk. There may be a need
for the med ium-term scheduler to move a process out of main memory to ease the problem.

One memory management technique is to parti tion memory w ith the aim of loading the
whole of a process into one pa rtition. Dynamic part itioning allows the partition size to match
the process size. An extension of this idea is to divide larger processes into segments, with
each segment loaded into a dynamic part ition. Alternatively, a paging method can be used.
The process is divided into equal-s ized pages and memory is divided into frames of the same
size. All of t he pages are loaded into memory at t he same ti me.

The most flexible approach to memory management is to use virtual memory based on
paging but wi t h no requirement for all pages to be in memory at the same time. In a virtual

---------- ------ --

J - -

j Chapter 20: System Software

memory system, the address space that the CPU uses is larger than the physical main
memory space. This requires the CPU to transfer address values to a memory management
unit that allocates a corresponding address on a page.

Virtual memory: a paging mechanism that al lows a program to use more memory addresses than are
available in main memory

The start ing situation is that the set of pages comprising the process are stored on disk. One
or more of these pages is loaded into memory when the process is changing to the ready
state. When the process is dispatched to the running state, t he process starts executing. At
some stage, it will need access to pages st ill stored on disk which means that a page needs to
be taken out of memory first. This is when a page rep lacement algori thm is needed . A simple
algorithm wou ld use a fi rst-in first-out method. A more sensible method would be the least-
recently-used page but this requires statistics of page use to be recorded .

One of the advantages ofthe virtual memory approach is that a very la rge program can be run
when an equa lly large amount of memory is unavailab le. Another advantage is that only part of
a program needs to be in memory at any one time. For example, the index tab les for a database
cou ld be permanently in memory but the full tables could be brought in on ly when required .

The system ove rhead in running vi rtual memory can be a disadvantage. The worst problem
is 'disk thrashing', when part of a process on one page requires another page wh ich is on disk.
When that page is loaded it almost immediately requires the original page again . This can
lead to almost perpetual loading and unload ing of pages. Algorithms have been developed
to guard against this but the problem can still occur, fortunately only rarely.

20.04 Virtual machine
Although virtua l memory could be used in a system runn ing a virtua l mach ine, the two are
completely different concepts that must not be confused . Also note t hat the Java virtua l
machine discussed in Chapter 7 (Sect ion 7.05) is based on a different underlying concept.

The principle of a vi rtual machine is that a process interacts directly with a software interface
provided by the operating system. The kernel of the operat ing system handles all of the
interactions wi th the actual ha rdware of the host system. The software interface provided for
t he virtua l machine provides an exact copy of the hardware. The logical structure is shown in
Figu re 20.06.

Application programs for
virtual machine VMl

OS kernel forVMl

Virtual machine VMl

Application programs for
virtual machine VM2

OS kernel for VM2

Virtual machine VM2

Virtual-machine implementation software

Hardware

Figure 20.06 Logical structure for a vi rtual machine implementation

I

Cambridge International AS and A level Computer Science

The advantage of the virtual machine approach is that more than one different operat ing
system can be made ava ilable on one computer system. This is particularly valuab le if an
organ isation has legacy systems and wishes to cont inue to use the software but does not
wish to keep the aged hardware. Alternat ively, the same operating system can be made
available many t imes. This is done by companies wi t h large mainframe computers that offer
server consolidation facilit ies. Different companies can be offered their own virtua l machine
running as a server.

One drawback to using a virtual machine is t he time and effort requ ired for implementation .
Anoth er is the fact that the imp lementation wi ll not offer the same level of performance that
would be obtained on a normal system.

20.05 Translation software
An overview of how a compiler or an interpreter is used was presented in Chapter 7 (Section
7.05) . This section wil l consider some details of how a compi ler wo rks w ith a brief reference to
the workings of an interpreter. ·

A co mpi ler ca n be described as having a 'front end' and a 'back end'. The front-end program
performs ana lysis of t he source code and produces an intermediate code that expresses
completely the semantics (the mea ning) of the source code. The back-end program then
takes th is intermediate code as input and performs synthesis of object code. This analysis-
synthesis model is represented in Figure 20.07.

Source
code Analyse

Intermediate
code

Interpret
and

execute

Figure 20.07 Analysis-synthesis model for a compiler

Synthesise Object
code

For si mpl icity, Figure 20.07 assumes no error in the sou rce code. The re is a repetit ive process
in which the source code is read li ne-by-line. For each line, the comp iler creates matching
intermed iate code. Fi gure 20.07 also shows how an interpreter program would have the same
ana lysis fron t-en d: In this case, however, once a line of source code has been converted to
intermediate code, it is executed .

Front-end analysis stages
The four stages of front-end analysis, shown in Figure 20.08, are:

lexica l ana lysis

• syntax ana lysis
• semantic analysis

intermediate code generation .

-- - -- -

· Chapter 20: System Software

Source Symbol
code table~

t Syntax
ana lysis

Lexical fokens/~ analysis

Figure 20.08 Front-end analysis

Parse
tree

Annotated
abstract
syntax '---+

tree

t
Semantic
ana lys is

Intermediate
code

generation

Intermediate
code

In lexica l analysis each line of source code is separated into tokens. This is a pattern-
matching exercise. It requires the ana lyser to have knowledge of the components that can be
fou nd in a program written in t he part icular programming language.

For example, the declarat ion sta tement:

Va r Count : i n tege r ;

would be recognised as containing five tokens:

Var Count : integ er

The assignment statement:

PercentMark [Count) . - Score * 10

would be recogn ised as containing eight tokens:

Perc entMark [Count J : = Sc o re * 10

The analyser must categorise each token . For instance, in the first example, va r and integer
must be recognised as keywords. The non -alphanu meric ch aracte rs such as [or * must be
categorised. The : = is a special case; the analyser must recognise that this is one operator
with two characters that must not be separated .

Fi nally, all identifiers such as count and Percen t Mark must be recognised as such and
an entry for each must be made in the symbol table (which cou ld have been called t he
identifier table) . The symbol table co ntains identifier attribu tes such as the data type,
where it is declared and whe re it is assigned a value. The symbo l tab le is an important
data structure for a compiler. Although Figure 20.08 shows it only being used by the syntax
analysis program, it is also used by la ter stages of comp ilat ion.

Symbol table: a data structu re in which each record contains the name and attributes of an identifier

Syntax ana lys is, wh ich is also known as parsing, involves ana lysis of t he
program const ruct s. The resu lts of the analysis are recorded as a syntax or parse t ree.
Figure 20. 09 shows the pa rse tree for the foll owing assignment statement:

y := 2 * X + 4

Note t hat the hierarchical st ructure of the tree, if correctly in terpreted, ensures t hat the
mult iplicat ion of 2 by xis carried out before t he addition of 4. ·

Semantic analysis is about estab lish ing the full meaning of t he code. An annotated
abstract syntax tree is constructed to record this informat ion. For the ident if iers in this

/~
y +

/~
4

/~
2 X

Figure 20.09 Parse tree for an
assignment statement

I

•

Cambridge International AS and A level Computer Science

tree an associated set of attributes is established including, for example, the data type. These
attributes are also recorded in the symbol table.

An often -used intermed iate code created by the last stage of front-end analysis is a three-
add ress code. As an example the following assignment statement has five identifiers
requir ing five addresses:

y :=a+ (b * c - d) I e

This could be converted into the following four statements, each requiring at most three
addresses:
temp .- b * C

temp . - temp - d

temp .- temp I e

y .- a + temp

Representation of the grammar of a language
Fo r each programming language, there is a
defined grammar. This grammar must be
understood by a programmer and also by a
compiler writer.

One method of presenting the grammar rules
is a syntax diagram. Figure 20.10 rep resents the
grammar rule that an identifier must start wi th a
letter which can be fo llowed by any combination
of none or more letters or digits. The convention
used here is that options are drawn above the
main flow line and repetitions are drawn below it.

ldentif ier
Letter

H

,------+

,------+

Letter

Digit

An alternative approach is to use Backus- Naur
Form (BNF). A possible format for a BNF defin ition
of an identifier is:

Figure 20.10 Syntax diagram defining an identifier

<Identifier> ::= <Letter>l<ldentifier><Letter> l<ldent ifier><Digit>

<Digit>: := Ol l l2l3l4ISl6l718l9

<Letter> ::= <UpperCaseLetter>l<LowerCaseLetter>

<Uppercase Letter> ::= AIBICI DI EIFIGI HII IJIKILI Ml NIOI PIQIRISITIUIVIWIXIYIZ

<LowerCaseLetter> ::= alblcldle lfl glhliljlklllmlnlolplqlrlslt lulvlwlxlylz

The use of I is to separate individual options. The ::= characters can be read as 'is defined
as'. Note the recu rsive defin ition of <Identifier> in this particular version of BNF. Without the
use of recursion the definition wou ld need to be more compl icated to include all possible
combinations following the initial <Letter>.

A syntax diagram is only used in the context of a language. It has lim ited use because it
cannot be incorporated into a comp iler program as an algorithm. By contrast, BNF is a
genera l approach which can be used to describe any assembly of data. Furthermore, it can
be used as the basis for an algorithm .

-

-

'

'· ' Chapter 20: System Software

Back-end synthesis stages
If the front-end analysis has established that there are syntax errors, the only back-
end process is the presentation of a list of these errors. For each error, there will be an
explanation and the location within the program source code.

In the absence of errors, the main back-end stage is machine code generation from the
intermediate code. This may involve optimisation of the code. The aim of optimisation
is to create an efficient program; the methods that can be used are diverse. One type of
opt imisation focuses on features that were inherent in the original source code and have
been propagated into the intermediate code. As a simple example, consider these successive
assignment statements:

x .- (a+ b) * (a - b)

y := (a+ 2 * b) * (a - b)

The most efficient code would be:

temp .- (a - b)

x .- (a+ b) * temp

y := x +temp * b

Question 20.01
Check the maths for the efficient code defined above.

Another example is when a statement inside a loop, wh ich is therefore executed for each
repetition of the loop, does the same thing each time. Optimisation wou ld place the
statement immediately before the loop.

The other type of optimisation is instigated when the machine code has been created . This
type of optimisation may involve efficient use of registers or of memory.

Evaluation of expressions
An assignment statement often has an algebraic expression defining a new value for an
identifier. The expression can be evaluated by first ly converting the infix representation in the
code to Reverse Polish Notation (RPN). RPN is a postfix representation which never requires
brackets and has no rules of precedence.

WORKED EXAMPLE 20.01

Manually converting an expression between RPN and infix
Converting an expression to RPN

We consider a very simple expression :

a + b * C

The conversion to RPN has to take into account ope rator precedence so the first step is to
convert b * c to get the intermediate form:

a + b C *

We then convert the two terms to give the final RPN form:

a b C * +

- ----------- --- --- --

•

Cambridge International AS and A level Computer Science

If the original expression had been (a + b) * c (where the brackets were essentia l) then
the conversion to RPN would have given:

a b + C *

Converting an expression from RPN

Consider this more complicated examp le of an RPN expression :

x 2 * y 3 * + 6 /

The process is as fo llows. The RPN is scanned until two identifiers are fo llowed by an
operato r. This combination is converted to give an intermediate form (brackets are used for
clarification):

(x * 2) y 3 * + 6 I

This process is repeated to give the fol lowing successive versions:

(x * 2) (y * 3) + 6 I

(x * 2) + (y * 3) 6 I

((x * 2) + (y * 3) l I 6

Because of the precedence rules, some of the brackets are unnecessary; the fina l version
could be written as:

(x * 2 + y * 3 l I 6

WORKED EXAMPLE 20.02

Using a syntax tree to convert an expression to RPN
In the syntax analysis stage, an expression is represented as a syntax tree. The expression
a + b * c wou ld be presented as shown in Figure 20.11.

+

a
/~

*

/~
b C

Figure 20.11 Syntax tree for an infix expression

To create this tree, the lowest precedence operator(+) is positioned at the root. If there are
several with the same precedence, the first one is used. The RPN form of t he expression
can now be extracted by a post-order traversal . This sta rts at the lowest leaf to the left of
t he root and then uses left-right- root ordering which ensures, in this case, that the RPN
representation is:

a b C * +

-

r

WORKED EXAMPLE 20.03

Using a stack with an RPN expression

RPN
expression

line

Stack
line

Figu re 20.12 Shunting-ya rd algorithm

Infix
expression

line

Chapter 20: System Software

To convert an infix expression to RPN using a stack, the shunting-yard algorithm is used
(F igu re 20.12).

Converting an expression to RPN

The rules of the algorithm are to cons ider the string of tokens representing the inf ix
expression. These represen t the rai lroad waggons tha t are to be shunted from the infix li ne
to the RPN line. The tokens are examined one by one. For each one, the rules are:

If it is an identifier, it passes straight t hrough to the RPN expression line.
If it is an operator, there are two options:

o If the stack li ne is empty or conta ins a lower precedence operator, the operator is
diverted into the stack line.

o If the stack line contains an equal or higher preference operator, then t hat operator
is popped from the stack into the RPN expression line and the new operator takes
its place on the stack line.

• When all tokens have left the infix line, the operato rs remain ing on the stack line are
popped one by one from the stack line onto the RPN exp ression line.

Consider the infix expression a + b * c. Table 20.02 traces t he conversion process. The
f irst operato r to enter the stack line is the + so when the higher precedence* comes later
it too enters t he stack line. At the end the* is popped followed by the +.

Infix line Stack line RPN line
a+b * c
+b' c a
b 'c + a
, C + ab
C +' ab

+' a b c
+ ab C'

ab C' +

Table 20.02 Trace of the conversion process

Had t he infix exp ression been a * b + c t hen* would have been first to enter the stack
line but it would have been popped from the stack before+ could enter.

•

Cambridge International AS and A level Computer Science

Evaluating an RPN expression

A stack can be used to evaluate an RPN expression . Let's consider the execution of the
following RPN expression when x has the value 3 and y has the va lue 4:

x 2 * y 3 * + 6 /

The rules followed here are that the values are added to the stack in turn. The process is
interrupted if the next item in the RPN expression is an operator. This causes the top two
items to be popped from t he stack. Then t he operator is used to create a new value from
t hese two and the new va lue is added to the stack. The process then continues. Figure.
20.13 shows the successive contents of ttle stack with an indication of when an operator
has been used. The intermediate states of the stack when two va lues have been popped
are not shown .

* * + I

Figure 20.13 Evaluating a Reverse Polish expression using a stack

TASK20.0l
Practise your understanding of RPN .
1 Convert the fo llowing infix expressions into RPN using the methods described in

Worked Examples 20.01, 20.02 and 20.03:
(x - yl I 4

3 * (2 + x / 7)

2 Convert the following RPN expressions into the corresponding infix expressions:
4 a b + c + d + e + *

y 2 z 3 + I

Note that the caret(") symbol represents 'to the power of'.

3 Using simple values for each variable in part 2, use the infix version to evaluate the
exp ression . Then use the stack method to evaluate the RPN exp ression and check
that you get the same result.

It needs to be understood that the use of RPN would be of little value if t he simple processor
with a limited instruction set discussed in Chapter 6 (Section 6.04) was being used. Modern
processors will have instructions in the instruction set that hand le stack operations, so a
compiler can convert expressions into RPN knowing that conversion to machine code can
utili se these and allow stack processing in program execution.

(Chapter 20: System Software

• The operating system provides resource management including scheduling of processes,
memory management and control of the 1/0 system.

• For the user, the operating system provides an interface, a file system and application
programming interfaces.

• A modular approach provides a flexible structure for the operating system.

• There are five states for a process: new, ready, running, waiting and terminated .

• A process may be interrupted by an error, a need for an 1/0 activity or the scheduling algorithm.

• In a virtual machine, a process interacts with a software interface provided by the operating system.

• Compiler operation has a front-end program providing ana lysis and a back-end program
providing synthesis.

• Backus-Naur form is used to represent the rules of a grammar.

• Reverse Polish Notation is used for the evaluation of expressions.

Exam-style Questions
1 a In a multiprogram ming environment, the concept of a process has been found to be very

useful in controlling the execution of programs.

Exp lai n the concept of a process.

ii In one model for the execution of a program, there are five defined process states. Identify three of them
and explain the meaning of each .

b The transit ion of processes between states is contro lled by a scheduler.

Identify t wo scheduling algorithms and for each classify its type.

ii A scheduling algorithm might be chosen to use priorit isation. Identify two criteria that could be used to
assign a priority to a process.

2 a Three memory management techn iques are partition ing, schedul ing and paging.

Give defin iti ons of them.

ii Identify two ways in wh ich they might be combined.

b Some systems use virtual memory.

Identify which of the techn iques in part (a) is used to create virtua l memory.

ii Explain two advantages of using vi rtual memory.

iii Explain one prob lem that can occur in a virtual memory system.

[2]

[6]

[4]

[2]

[3]

[2]

[l]

(4]

[2]

I

Cambridge International AS and A level Computer Science

3 a A compi ler is used to translate a program into machine code.

A compiler is model led as conta ining a front end and a back end . State the overa ll aim of the front end
and of the back end.

ii Identify two processes wh ich are part of the front end.

iii Identify two processes wh ich are pa rt of the back end .

b Complete the following Backus-Naur definition of a signed integer:

<Digit> ::=

<Sign> ::=

<Unsigned integer>::=

<Signed integer>::=

c Convert the expression (a + 6) + b I c into Reverse Polish Notat ion.

d Convert the Reverse Pol ish Notation expression 2 a 3 b * 6 c * - + into infix notation.

[2]

[2]

[2]

[4]

[2]

[2]

	Scan301 (20 files merged).pdf (p.301-320)

