TR T gy

Learning objectives
By the end of this chapter you should be able to:

® show understanding of how an operating system can
maximise the use of resources
describe the ways in which the user interface hides the
complexities of the hardware from the user
show understanding of processor management including:
the concepts of a process, multitasking and an interrupt
and the need for scheduling
show understanding of paging for memory management
including: the concepts of paging and virtual memory, the
need for paging, how pages can be replaced and how disk
thrashing can occur

show understanding of the concept of a virtual machine
and give examples of the role of virtual machines and
their benefits and limitations

287

show understanding of how an interpreter can execute
programs without producing a translated version

show understanding of the various stages in the
compilation of a program

show understanding of how the grammar of a language
can be expressed using syntax diagrams or Backus-Naur
Form (BNF) notation

show understanding of how Reverse Polish Notation
(RPN) can be used to carry out the evaluation of
expressions.

288

Cambridge International AS and A level Computer Science

20.01 The purposes of an operating system (0S)

Before considering the purposes of an operating system (0S), we need to present the context
in which it runs. A computer system needs a program that begins to run when the system is
first switched on. At this stage, the operating system programs are stored on disk so there

is no operating system. However, the computer has stored in ROM a basic input output
system (BIOS) which starts a bootstrap program. It is this bootstrap program that loads the
operating system into memory and sets it running.

An operating system can provide facilities to have more than one program stored in memory.
Only one program can access the CPU at any given time but others are ready when the
opportunity arises. This is described as multi-programming. This will happen for one single
user. Some systems are designed to have many users simultaneously logged in. Thisis a
time-sharing system.

The purposes of an operating system can usefully be considered from two viewpoints:

an internal viewpoint and an external viewpoint. The internal viewpoint concerns how
the activities of the operating system are organised to best use the resources available.
The external viewpoint concerns the facilities made available for system usage. Chapter 7
(Section 7.02) contained a categorised summary of the various activities that an operating
system engages in. This chapter discusses some of them in more detail.

Resource management

The three fundamental resources in a computer system are:
o theCPU

e the memory

o thel/O (input/output) system.

Resource management relating to the CPU concerns scheduling to ensure efficient usage.
The methods used are described in Section 20.03. These methods consider the CPU as a
single unit; specific issues relating to a multiprocessor system are not considered. Resource
management relating to the memory concerns optimum usage of main memory.

The /0 system does not just relate to input and output that directly involves a computer
user. It also includes input and output to storage devices while a program is running. Figure
20.01 shows a schematic diagram that illustrates the structure of the |/O system.

Disk Screen Keyboard Printer
Disk Screen Keyboard Printer
device device device device
driver driver driver driver

| | | |

CPU | Memory

Figure 20.01 Main components associated with the I/0 system

The bus structure in Figure 20.01 shows that there can be an option for the transfer of data
between an I/O device and memory. The operating system can ensure that /O passes via the

Chapter 20: System Software

CPU but for large quantities of data the operating system can ensure direct transfer between

memory and an |/O device.
] To understand the issues associated with /O management, Device Data rate Time for transfer of 1 byte
| some discussion of timescales is required. It must be Keyboard 10 Bps 01s

understood that one second Is avery long time for TRoa 50 MBps W

a computer system. A CPU typically operates at GHz . -
P frequencies. One second sees more than one trillion clock Disk 5 MBps 2x107's

les. S typical dsfor /O iven in Table 20.01.
P cifiee, SomeTpien) eppecsorl Dai BREIRIRG S Table 20.01 Typical rates and times for data transfer

The slow speed of I/0 compared to a typical CPU clock
cycle shows that management of CPU usage is vital to ensure that the CPU does not remain
idle while I/O is taking place.

Operating system facilities provided for the user

The user interface may be made available as a command line, a graphical display or a voice
recognition system but the function is always to allow the user to interact with running
programs. When a program involves use of a device, the operating system provides the
device driver: the user just expects the device to work. (You might, however, wish to argue
that printers do not always quite fit this description.)

The operating system will provide a file system for a user to store data and programs. The
user has to choose filenames and organise a directory (folder) structure but the user does not
have to organise the physical data storage on a disk. If the user is a programmer, the operating
system supports the provision of a programming environment. This allows a program to be
created and run without the programmer being familiar with how the processor functions.

When a program is running it can be considered to be a type of user. The operating system
provides a set of system calls that provide an interface to the services it offers. For instance, if
a program specifies that it needs to read data from a file, the request for the file is converted
into a system call that causes the operating system to take charge, find the file and make it
available to the program. An extension of this concept is when an operating system provides
an application programming interface (API). Each AP call fulfils a specific function such as
creating a screen icon. The API might use one or more system calls. The APl concept aims to
provide portability for a program.

Operating system structure
An operating system has to be structured in order to provide
a platform for both resource management and the provision

User interface

of facilities for users. The logical structure of the operating |
system provides two modes of operation. User mode s the Application programs
one available for the user or an application program. The I

alternative has a number of different names of which the

most often used are ‘privileged mode’ or ‘kernel mode’. The Utilities
difference between the two is that kernel mode has sole |
access to part of the memory and to certain system functions Kernel
that user mode cannot access. |
It is now normal for the operating system to be separated Hardware interface
‘ into a kernel which runs all of the time and the remainder
; which runs in user mode. One possibility thenis to use a Figure 20.02 Layered structure for an operating system

layered structure asillustrated in Figure 20.02.

Cambridge International AS and A level Computer Science

In this model, application programs or utility programs could make system calls to the
kernel. However, to work properly each higher layer needs to be fully serviced by a lower
layer (as in a network protocol stack).

This is hard to achieve in practice. A more flexible approach uses a modular structure,
illustrated in Figure 20.03. The structure works by the kernel calling on the individual services
when required. It could possibly be associated with a micro-kernel structure where the
functionality in the kernel is reduced to the absolute minimum.

Device
management

File
management

Scheduling
management

Memory
management

Figure 20.03 Modular structure for an operating system

20.02 Process scheduling

Programs that are available to be run on a computer system are initially stored on disk. In

a time-sharing system a user could submit a program as a ‘job’ which would include the
program and some instructions about how it should be run. Figure 20.04 shows an overview
of the components involved when a program is run.

Along-term or high-level scheduler program controls the selection of a program stored on disk

to be moved into main memory. Occasionally a program has to be taken back to disk due to the
memory getting overcrowded. This is controlled by a medium-term scheduler. When the program
isinstalled in memory, a short-term or low-level scheduler controls when it has access to the CPU.

Y
Y

Memory CPU

A

Disk <

Figure 20.04 Components involved in running a program

Process states

In Chapter 7 (Section 7.02), it was stated that a process can be defined as ‘a program being
executed’. This definition is perhaps better slightly modified to include the state when the
program first arrives in memory. At this stage a process control block (PCB) can be created
in memory ready to receive data when the process is executed. Once in memory the state of
the process can change.

The transitions between the states shown in Figure 20.05 can be described as follows:

e Anew process arrives in memory and a PCB is created; it changes to the ready state.

o A process in the ready state is given access to the CPU by the dispatcher; it changes to the
running state.

e Aprocessin the running state is halted by an interrupt; it returns to the ready state.

o Aprocess in the running state cannot progress until some event has occurred (/O perhaps);
it changes to the waiting state (sometimes called the ‘suspended’ or ‘blocked’ state).

Chapter 20: System Software

» Aprocess in the waiting state is notified that an event is completed; it returns to the ready
state.

 Aprocess in the running state completes execution; it changes to the terminated state.

Terminated

Ready

Figure 20.05 The five states defined for a process being executed

Itis possible for a process to be separated into different parts for execution. The separate parts
are called threads. If this has happened, each thread is handled as though it were a process.

Process: a program in memory that has an associated process control block

Process control block (PCB): a complex data structure containing all data relevant to the running of
a process

Thread: part of a process being executed

Interrupts

Some interrupts are caused by errors that prematurely terminate a running process.
Otherwise there are two reasons for interrupts:

» Processes consist of alternating periods of CPU usage and I/0O usage. I/O takes far too long
for the CPU to remain idle waiting for it to complete. The interrupt mechanism is used
when a process in the running state makes a system call requiring an 1/0 operation and
has to change to the waiting state.

o The scheduler decides to halt the process for one of several reasons, discussed in the next
section (‘Scheduling algorithms’).

Whatever the reason for an interrupt, the OS kernel must invoke an interrupt-handling
routine. This may have to decide on the priority of an interrupt. One required action is
that the current values stored in registers must be recorded in the process control block.
This allows the process to continue execution when it eventually returns to the running
state.

Discussion Point:
What would happen if an interrupt was received while the interrupt-handling routine was
being executed by the CPU? Does this require a priority being set for each interrupt?

Cambridge International AS and A level Computer Science

Scheduling algorithms

Although the long-term or high-level scheduler will have decisions to make when choosing
which program should be loaded into memory, we concentrate here on the options for the
short-term or low-level scheduler.

A scheduling algorithm can be preemptive or non-preemptive. A preemptive algorithm
can halt a process that would otherwise continue running undisturbed. If an algorithm is
preemptive it may involve prioritising processes.

The simplest possible algorithm is first come first served (FCFS). This is a non-preemptive
algorithm and can be implemented by placing the processes in a first-in first-out (FIFO)
queue. It will be very inefficient if it is the only algorithm employed but it can be used as part
of a more complex algorithm.

A round-robin algorithm allocates a time slice to each process and is therefore preemptive,
because a process will be halted when its time slice has run out. It can be implemented as a
FIFO queue. It normally does not involve prioritising processes. However, if separate queues
are created for processes of different priorities then each queue could be scheduled using a
round-robin algorithm.

A priority-based scheduling algorithm is more complicated. One reason for this is that every
time a new process enters the ready queue or when a running process is halted, the priorities
for the processes may have to be re-evaluated. The other reason is that whatever scheme is
used to judge priority level it will require some computation. Possible criteria are:

» estimated time of process execution

» estimated remaining time for execution

o length of time already spent in the ready queue
e whether the process is I/O bound or CPU bound.

More than one of these criteria might be considered. Clearly, estimating a time for execution
may not be easy. Some processes require extensive |/, for instance printing wage slips for
employees. There is very little CPU usage for such a process so it makes sense to allocate it
a high priority so that the small amount of CPU usage can take place. The process will then
change to the waiting state while the printing takes place.

20.03 Memory management

The term memory management embraces a number of aspects. One aspect concerns the
provision of protected memory space for the OS kernel. Another is that the loading of a
program into memory requires defining the memory addresses for the program itself, for
associated procedures and for the data required by the program. In a multiprogramming
system, this might not be straightforward. The storage of processes in main memory can get
fragmented in the same way as happens for files stored on a hard disk. There may be a need
for the medium-term scheduler to move a process out of main memory to ease the problem.

One memory management technique is to partition memory with the aim of loading the
whole of a process into one partition. Dynamic partitioning allows the partition size to match
the process size. An extension of thisidea is to divide larger processes into segments, with
each segment loaded into a dynamic partition. Alternatively, a paging method can be used.
The process is divided into equal-sized pages and memory is divided into frames of the same
size. All of the pages are loaded into memory at the same time.

The most flexible approach to memory management is to use virtual memory based on
paging but with no requirement for all pages to be in memory at the same time. In a virtual

Chapter 20: System Software

memory system, the address space that the CPU uses is larger than the physical main
memory space. This requires the CPU to transfer address values to a memory management
unit that allocates a corresponding address on a page.

Virtual memory: a paging mechanism that allows a program to use more memory addresses than are
available in main memory

The starting situation is that the set of pages comprising the process are stored on disk. One
] or more of these pages is loaded into memory when the process is changing to the ready
state. When the process is dispatched to the running state, the process starts executing. At
some stage, it will need access to pages still stored on disk which means that a page needs to
be taken out of memory first. This is when a page replacement algorithm is needed. A simple
algorithm would use a first-in first-out method. A more sensible method would be the least-
recently-used page but this requires statistics of page use to be recorded.

One of the advantages of the virtual memory approach is that a very large program can be run
when an equally large amount of memory is unavailable. Another advantage is that only part of
a program needs to be in memory at any one time. For example, the index tables for a database

.
could be permanently in memory but the full tables could be brought in only when required.
b
|

The system overhead in running virtual memory can be a disadvantage. The worst problem
is ‘disk thrashing’, when part of a process on one page requires another page which is on disk.
When that page is loaded it almost immediately requires the original page again. This can
lead to almost perpetual loading and unloading of pages. Algorithms have been developed
to guard against this but the problem can still occur, fortunately only rarely.

20.04 Virtual machine

Although virtual memory could be used in a system running a virtual machine, the two are
completely different concepts that must not be confused. Also note that the Java virtual
machine discussed in Chapter 7 (Section 7.05) is based on a different underlying concept.

The principle of a virtual machine is that a process interacts directly with a software interface
provided by the operating system. The kernel of the operating system handles all of the
interactions with the actual hardware of the host system. The software interface provided for
the virtual machine provides an exact copy of the hardware. The logical structure is shown in
Figure 20.06.

Application programs for Application programs for
virtual machine VM1 virtual machine VM2

| |
OS kernel for VM1 OS kernel for VM2
| |
Virtual machine VM1 Virtual machine VM2

Virtual-machine implementation software

Hardware

Figure 20.06 Logical structure for a virtual machine implementation

Cambridge International AS and A level Computer Science

The advantage of the virtual machine approach is that more than one different operating
system can be made available on one computer system. This is particularly valuable if an
organisation has legacy systems and wishes to continue to use the software but does not
wish to keep the aged hardware. Alternatively, the same operating system can be made
available many times. This is done by companies with large mainframe computers that offer
server consolidation facilities. Different companies can be offered their own virtual machine
running as a server.

One drawback to using a virtual machine is the time and effort required for implementation.
Another is the fact that the implementation will not offer the same level of performance that
would be obtained on a normal system.

20.05 Translation software

An overview of how a compiler or an interpreter is used was presented in Chapter 7 (Section
7.05). This section will consider some details of how a compiler works with a brief reference to
the workings of an interpreter. '

A compiler can be described as having a ‘front end” and a ‘back end’. The front-end program
performs analysis of the source code and produces an intermediate code that expresses
completely the semantics (the meaning) of the source code. The back-end program then
takes this intermediate code as input and performs synthesis of object code. This analysis-
synthesis model is represented in Figure 20.07.

Source : Intermediate - Object
Read |—»| Analyse m Synthesise

Y
Interpret
and
execute

Figure 20.07 Analysis-synthesis model for a compiler

For simplicity, Figure 20.07 assumes no error in the source code. There is a repetitive process
in which the source code is read line-by-line. For each line, the compiler creates matching
intermediate code. Figure 20.07 also shows how an interpreter program would have the same
analysis front-end: In this case, however, once a line of source code has been converted to
intermediate code, it is executed.

Front-end analysis stages

The four stages of front-end analysis, shown in Figure 20.08, are:
o lexical analysis

o syntax analysis

e semantic analysis

» intermediate code generation.

Chapter 20: System Software

Annotated
abstract 7
Source Symbol syntax Intermded:ate
I code table tree code
2 generation

; T A
Syntax >
v analysis I:arse i
Lexical - —> g Semantic ;
analysis analysis / Inte;n;w;glate /

Figure 20.08 Front-end analysis

In lexical analysis each line of source code is separated into tokens. This is a pattern-
matching exercise. It requires the analyser to have knowledge of the components that can be
found in a program written in the particular programming language.

For example, the declaration statement:

Var Count : integer;

would be recognised as containing five tokens:

Var Count : integer ;
The assignment statement:
' PercentMark[Count] := Score * 10
i would be recognised as containing eight tokens:
PercentMark [Count] := Score * 10

The analyser must categorise each token. For instance, in the first example, var and integer
must be recognised as keywords. The non-alphanumeric characters such as [or * must be
categorised. The :=is a special case; the analyser must recognise that this is one operator
with two characters that must not be separated.

Finally, all identifiers such as count and PercentMark must be recognised as such and

an entry for each must be made in the symbol table (which could have been called the
identifier table). The symbol table contains identifier attributes such as the data type,
where it is declared and where it is assigned a value. The symbol table is an important
data structure for a compiler. Although Figure 20.08 shows it only being used by the syntax
analysis program, it is also used by later stages of compilation.

Symbol table: a data structure in which each record contains the name and attributes of an identifier

Syntax analysis, which is also known as parsing, involves analysis of the " \ .

program constructs. The results of the analysis are recorded as a syntax or parse tree.

Figure 20.09 shows the parse tree for the following assignment statement: / \
¥ ow= 2% 28 o4 A & i

Note that the hierarchical structure of the tree, if correctly interpreted, ensures that the / \

multiplication of 2 by x is carried out before the addition of 4. 2 X

Semantic analysis is about establishing the full meaning of the code. An annotated Figure 20.09 Parse tree for an
abstract syntax tree is constructed to record this information. For the identifiers in this assignment statement

Cambridge International AS and A level Computer Science

tree an associated set of attributes is established including, for example, the data type. These
attributes are also recorded in the symbol table.

An often-used intermediate code created by the last stage of front-end analysis is a three-
address code. As an example the following assignment statement has five identifiers
requiring five addresses:

yve=a + (b * ¢ —-4d) [e

This could be converted into the following four statements, each requiring at most three

addresses:

temp = b * e
temp := temp — 4
temp := temp / e
y = a + temp

Representation of the grammar of a language
For each programming language, thereis a

defined grammar. This grammar must be

understood by a programmer and also by a

compiler writer.

Y

Letter |—

One method of presenting the grammar rules

is a syntax diagram. Figure 20.10 represents the

grammar rule that an identifier must start with a

letter which can be followed by any combination Identifier ‘L
s : —>| Letter

of none or more letters or digits. The convention

used here is that options are drawn above the

main flow line and repetitions are drawn below it.

Y

Digit

296

\4

An alternative approach is to use Backus-Naur Figure 20.10 Syntax diagram defining an identifier
Form (BNF). A possible format for a BNF definition
of an identifier is:

<ldentifier> ::= <Letter>|<Identifier><Letter>|<Identifier><Digit>
<Digit>::= 0|1]2|3|4/5/6|7|8|9

<Letter> == <UpperCaseletter>|<LowerCasel etter>

<UpperCaseletter> := A|B|C|D|E|F|G|H|I|J|K|L|M|N[O|P|Q|R|S|TIU[V|WI[X]|Y|Z
<LowerCaseletter> ::= alblc|d|e|flg|hliljlk|l|m|n|o|p|alr|s|tjulvwixly|z

The use of | is to separate individual options. The ::= characters can be read as ‘is defined
as’. Note the recursive definition of <Identifier> in this particular version of BNF. Without the
use of recursion the definition would need to be more complicated to include all possible
combinations following the initial <Letter=.

A syntax diagram is only used in the context of a language. It has limited use because it
cannot be incorporated into a compiler program as an algorithm. By contrast, BNF is a
general approach which can be used to describe any assembly of data. Furthermore, it can
be used as the basis for an algorithm.

Chapter 20: System Software

Back-end synthesis stages

If the front-end analysis has established that there are syntax errors, the only back-
end process is the presentation of a list of these errors. For each error, there will be an
explanation and the location within the program source code.

In the absence of errors, the main back-end stage is machine code generation from the
intermediate code. This may involve optimisation of the code. The aim of optimisation

is to create an efficient program; the methods that can be used are diverse. One type of
optimisation focuses on features that were inherent in the original source code and have
been propagated into the intermediate code. As a simple example, consider these successive
} assignment statements:

%

x := (@ +b) * (a - Db

y = (@ + 2 *b) * (a-Db)
The most efficient code would be:
temp := (a - b)

x := (@ + b) * temp

Yy := X + temp * b

Question 20.01
Check the maths for the efficient code defined above.
‘t Another example is when a statement inside a loop, which is therefore executed for each o
repetition of the loop, does the same thing each time. Optimisation would place the
statement immediately before the loop.

| The other type of optimisation is instigated when the machine code has been created. This
type of optimisation may involve efficient use of registers or of memory.

Evaluation of expressions

An assignment statement often has an algebraic expression defining a new value for an
identifier. The expression can be evaluated by firstly converting the infix representation in the
code to Reverse Polish Notation (RPN). RPN is a postfix representation which never requires
brackets and has no rules of precedence.

| WORKED EXAMPLE 20.01

Manually converting an expression between RPN and infix
Converting an expression to RPN

We consider a very simple expression:
a + b * e

The conversion to RPN has to take into account operator precedence so the first step is to
convertb * cto get the intermediate form:

a+ b c *

We then convert the two terms to give the final RPN form:

abc* +

Cambridge International AS and A level Computer Science

If the original expression had been (a + b) * c (where the brackets were essential) then
the conversion to RPN would have given:

ab+c *

Converting an expression from RPN

Consider this more complicated example of an RPN expression:
Sl 0 B B TN
The process is as follows. The RPN is scanned until two identifiers are followed by an

operator. This combination is converted to give an intermediate form (brackets are used for
clarification):

(x* 2) y3 * 4 6 /
This process is repeated to give the following successive versions:
(x * 2)(y * 3) + 6 /
(x *2) + (y * 3) 6 /
(= * 2) + (¥ * 3)) / 6

Because of the precedence rules, some of the brackets are unnecessary; the final version
could be written as:

(x * 2 +y *3) /6

WORKED EXAMPLE 20.02

Using a syntax tree to convert an expression to RPN

In the syntax analysis stage, an expression is represented as a syntax tree. The expression
a + b * cwould be presented as shown in Figure 20.11.

Vs
b/ \c

Figure 20.11 Syntax tree for an infix expression

To create this tree, the lowest precedence operator (+) is positioned at the root. If there are
several with the same precedence, the first one is used. The RPN form of the expression
can now be extracted by a post-order traversal. This starts at the lowest leaf to the left of
the root and then uses left-right-root ordering which ensures, in this case, that the RPN
representation is:

abc* +

Chapter 20: System Software

| WORKED EXAMPLE 20.03

Using a stack with an RPN expression

RPN Infix
expression expression
line line
Stack
| line

Figure 20.12 Shunting-yard algorithm
To convert an infix expression to RPN using a stack, the shunting-yard algorithm is used
(Figure 20.12).

Converting an expression to RPN

The rules of the algorithm are to consider the string of tokens representing the infix
expression. These represent the railroad waggons that are to be shunted from the infix line
to the RPN line. The tokens are examined one by one. For each one, the rules are:

« Ifitis an identifier, it passes straight through to the RPN expression line.

« [Ifitisan operator, there are two options:

o Ifthestack lineis empty or contains a lower precedence operator, the operator is
diverted into the stack line.

o Ifthestack line contains an equal or higher preference operator, then that operator
is popped from the stack into the RPN expression line and the new operator takes
its place on the stack line.

¢ When all tokens have left the infix line, the operators remaining on the stack line are
popped one by one from the stack line onto the RPN expression line.

Consider the infix expressiona + b * c. Table 20.02 traces the conversion process. The
first operator to enter the stack line is the + so when the higher precedence * comes later
ittoo enters the stack line. At the end the * is popped followed by the +.

Infix line Stack line RPN line
atb*c
+b*e a
b*c + a
i + ab
C R ab
+* abc
+ abc”
abe ™+

Table 20.02 Trace of the conversion process

Had the infix expression beena * b + ¢ then * would have been first to enter the stack
line but it would have been popped from the stack before + could enter.

Cambridge International AS and A level Computer Science

Evaluating an RPN expression

A stack can be used to evaluate an RPN expression. Let’s consider the execution of the
{ following RPN expression when x has the value 3 and y has the value 4:

X2 ®FY 3 % 46 /

The rules followed here are that the values are added to the stack in turn. The process is
interrupted if the next item in the RPN expression is an operator. This causes the top two
items to be popped from the stack. Then the operator is used to create a new value from
these two and the new value is added to the stack. The process then continues. Figure.
20.13 shows the successive contents of the stack with an indication of when an operator
has been used. The intermediate states of the stack when two values have been popped
| are not shown.

* * + /
‘ 3
2 4 12 6
| [3 | 3 [6 | 6 6 | 18 | 18 [3

Figure 20.13 Evaluating a Reverse Polish expression using a stack

TASK 20.01

Practise your understanding of RPN.

1 Convert the following infix expressions into RPN using the methods described in
Worked Examples 20.01, 20.02 and 20.03:
Ee =

Sk —0—pow =7

2 Convert the following RPN expressions into the corresponding infix expressions:

4 ab+c+d+ e+ *
e e
Note that the caret (%) symbol represents ‘to the power of’.

3 Using simple values for each variable in part 2, use the infix version to evaluate the
expression. Then use the stack method to evaluate the RPN expression and check
that you get the same result.

It needs to be understood that the use of RPN would be of little value if the simple processor
with a limited instruction set discussed in Chapter 6 (Section 6.04) was being used. Modern
processors will have instructions in the instruction set that handle stack operations, so a
compiler can convert expressions into RPN knowing that conversion to machine code can
utilise these and allow stack processing in program execution.

Chapter 20: System Software

Summary

The operating system provides resource management including scheduling of processes,
memory management and control of the 1/0 system.

For the user, the operating system provides an interface, a file system and application
programming interfaces.

A modular approach provides a flexible structure for the operating system.

There are five states for a process: new, ready, running, waiting and terminated.

A process may be interrupted by an error, a need for an I/0 activity or the scheduling algorithm.

In a virtual machine, a process interacts with a software interface provided by the operating system.

Compiler operation has a front-end program providing analysis and a back-end program
providing synthesis.

Backus-Naur form is used to represent the rules of a grammar.

Reverse Polish Notation is used for the evaluation of expressions.

Exam-style Questions

1 a Inamultiprogramming environment, the concept of a process has been found to be very
useful in controlling the execution of programs.

i Explain the concept of a process. (2]

ii Inone model for the execution of a program, there are five defined process states. Identify three of them
and explain the meaning of each. [6]

b Thetransition of processes between states is controlled by a scheduler.
i Identify two scheduling algorithms and for each classify its type. (4]

ii Ascheduling algorithm might be chosen to use prioritisation. Identify two criteria that could be used to
assign a priority to a process. 2]

2 a Three memory management techniques are partitioning, scheduling and paging.
i Give definitions of them. (3]
ii Identify two ways in which they might be combined. (2]
b Some systems use virtual memory.
i Identify which of the techniques in part (a) is used to create virtual memory. (1]
i Explain two advantages of using virtual memory. 4]

iii Explain one problem that can occur in a virtual memory system. : 2]

Cambridge International AS and A level Computer Science

3

A compileris used to translate a program into machine code.

i Acompileris modelled as containing a front end and a back end. State the overall aim of the front end
and of the back end.

ii Identify two processes which are part of the front end.
iii Identify two processes which are part of the back end.

Complete the following Backus-Naur definition of a signed integer:

Convert the expression (a + 6) + b / c into Reverse Polish Notation.

Convert the Reverse Polish Notation expression2 a 3 b * 6 ¢ * - + intoinfix notation.

	Scan301 (20 files merged).pdf (p.301-320)

