
Learning objectives
By the end of this chapter you should be able to:

• show understanding of Boolean algebra
• show understanding of De Morgan's Laws
• perform Boolean algebra using De Morgan's Laws
• simplify a logic circuit/expression using Boolean algebra
• produce truth tables for common logic circuits

• show understanding of how to construct a flip-flop
• describe the role of flip-flops as data storage elements
• show understanding of Karna ugh Maps and the benefits

of using them
• solve logic problems using Karnaugh Maps.

'If-~ -

· Chapter 18: Boolean Algebra and Logic Circuits

18.01 Boolean algebra basics
Chapter 4 (Section 4 01) introduced logic expressions consisting of logic propositions
combined using Boo lean operators. Boolean algebra provides a simplified way of writing a
logic expression and a set of rules for manipulating an expression.

Whenever a form of algebra is used it is vi tal that there is an understanding of its meaning. As
a simple example we can consider the following four interpretations of the meaning of 1 + 1:

1 + 1 = 2
1 + 1 = 10
1 + 1 = 0
1 + 1 = 1

The first shows denary arithmetic, the second binary arithmetic and the t hird bi t arithmetic.
The last one applies if Boolean algebra is being used. This is because in Boolean algebra 1
represents TRUE, 0 represents FALSE, and+ represents OR. Therefore the fourth statement
represents the logic statement:

TRUE OR TRUE is TRUE

There are options for the representation of Boolean algebra . For example, the symbols for
AND and OR are sometimes represented as I\ and v. There is the option of writing A.B or AB
for AND. The dot notation is used in t his book. Fina lly, there are options for how NOT A (the
inverse of A) can be represented. A is used here.

Having established the notation for Boolean algebra we have to consider the rules that apply.
These can formally be described as 'laws' or 'ident ities'. Table 18.01 contains a full listing.

Identity/Law AND form OR form

Identity LA=A O+A=A

Null O.A=O l+A= l

Idempotent A.A=A A+A=A

Inverse A.A=O A+A= l

Commutative A. B= B.A A+B = B+A

Associative (A. B).C = A.(B.C) (A+B)+C = A+(B+C)

Distributive A+B.C = (A+B).(A+C) A.(B+C) = A.B+A.C

Absorpt ion A(A+B) =A A+A.B=A

De Morgan's (i\.8) =A + 8 (A+ B) =A. 8

Double Complement A=A

Table 18.01 Boolean algebra identities (laws)

Some of the names used for the identities may be unfamiliar to you. Th is is not a concern.
You should note that for all but one of the identities there is an AND form and an OR form.
Furthermore, it is important to note that an identity wri tten in one form can be t ransformed into

- - --- --

•

•

Cambridge International AS and A level Computer Science

the other by interchanging each O or 1 and each AND and OR. For example, O.A = 0 which reads
FALSE AND A is FALSE transforms into TRUE OR A is TRUE, written in the algebra as l+A = 1.

It can also be seen that some of the identities look like those applying in normal algebra w ith
AND functioning as mu ltiplication and OR functioning as addition. Thus it is allowed for the
terms 'product ' and 'sum' to be used in the context of Boolean algebra.

TASKlS.01
It is vital that you can interpret a Boolean expression correctly. Go through Table 18.01 item by
item and in each case read out the full meaning. For example:

l+A = 1 can be read as 'one plus A equals l'
but must be understood as 'TRUE OR A is TRUE'

Although De Morgan's laws look complicated at first glance, they can be rationa lised easily.
The inverse of a Boolean product becomes the sum of the inverses of the individual values in
the product. The inverse of a Boolean sum is the product of the individ ual inverses.

Unfortunately, using the algebra to simplify expressions is not someth ing which can be learnt as a
routine. It almost inevitably requires a little lateral thinking as Worked Example 18.01 will show.

WORKED EXAMPLE 18.01

Using Boolean algebra to simplify an expression
Let's consider a simple example:

A+A.B can be simplified to A+B

In order to simplify the expression we have to first make it more compl icated! This is
where the la teral thinking comes in. The OR form of the absorption ident ity is A+A.B = A.
This can be used in reverse to replace A by A+A.B to produce the following:

A+A.B+A.B

Applying the AND form of the commutative law and t he OR form of the distributive law in
reverse we can see that:

A.B+A.B is the same as B.A+B.A which converts to B.(A+A)

This allows us to use t he OR form of the inverse identity which converts A+A to 1. As a
result the expression has become:

A+B.l

When the OR form of the commutative law and t he AND form of t he ident it y law are
app lied to the B.l term, it then becomes A+B.

18.02 Logic circuits
Chapter 4 introduced the symbols for logic gates that are used in logic circuits and discussed
the relationships between logic circuits, truth tables and logic exp ressions. This chapter
introduces some specific circu its that are used to construct components that provide
functionality in computer ha rdware.

'
; Chapter 18: Boolean Algebra and Logic Circuits
,,

The half adder
A fundamenta l operation in computing is bi nary add ition. The result of adding two bits is
either 1 or 0. However, when 1 is ad ded to 1 the result is O but there is a ca rry bit equal to 1.
This cannot be ignored if two numbers with severa l bits in each
are being ad ded. A 1 bit

B
half adder
circuitry

s
C The simplest circuit that can be used for binary add it ion is the

half adder. This can be represented by the diagram in Figure
18.01. The circuit takes two input bits and outputs a sum bit (S)
and a carry bit (C) .

Figure 18.01 A half adder

The circu it required can be considered in the context of the
t rut h table which is shown as Table 18.02.

One possib le circu it can be defined directly by examination
of the truth table. It can be seen that the only combination of
inputs that produces a 1 for the carry bit is when two 1 bit s are
input. The truth table for the C output is in fact the AND t rut h
table. The t ruth table for the S output can be seen to match that
for the XOR operator which is shown in Figure 4.02 in Chapter
4 (Section 4.04). Therefore, one circuit that would prod uce the
ha lf adder functi onality would contain an AND gate and an XOR
gate wi t h each gate receiving input from A and B.

Input Output

A B s C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 18.02 The truth table
for a half adder

This is only one of several circuits t hat would provide the fu nctional ity. As was explained in
Chapter 4 (Section 4.05), circu it manufacturers prefer to use either NAND or NOR gates. The
circuit shown in Figure 18.02 consisting only of NAND gates has t he correct logic to produce
the C and S outputs and is a likely choice for implementat ion .

A ----4....._---r-----..

B -~-..,___.,
s

C

Figure 18.02 A half adder circuit constructed from NANO gates

Question 18.01
In Fi gure 18.02, can you identify the ind ividual circu its that rep resent the AND operator and
the XOR operator?

TASK18.02
Use the intermediate points labelled W, X and Y to construct a truth table for the circuit shown
in Figure 18.02. Check that this reproduces the truth table shown as Table 18.02.

•

Cambridge International AS and A level Computer Science

The full adder
If two numbers expressed in binary with several bits are to be added, the
addition must start w ith the two least significant bits and then proceed to the
most significant bits. At each stage the carry from the previous add ition has
to be incorporated into the current addit ion. If a ha lf adder is used each t ime,
there has to be separate circu itry to ha ndle the carry bit because the half adder
only takes two inputs.

The full adder is a circuit that has three inputs including the previous carry bit.
The truth table is shown as Table 18.03.

One possible circuit for implementation contains two half adder circu its and an
OR gate as shown in Figure 18.03.

Input

A B

0 0

0 0

0 1

0 1

1 0

1 0

1 1

l l

Output

Cin s Cout

0 0 0

1 1 0

0 1 0

1 0 1

0 1 0

1 0 1

0 0 1

l l l

A ->- Half
B adder

Half
adder

s Table 18.03 The truth table
for a full adder ->- ,.._

Cin OR Cout
gate

Figure 18.03 A possible implementation of a full adder

As before, it is possible to construct the circuit entirely from NANO gates as shown in Figure 18.04.

s

Cout

Figure 18.04 A full adder circuit constructed from NANO gates

Discussion Point:
Can you see how full adders could be combined to handle addition of, for example, four-bit
binary numbers? What happens to the carry input for the first addition?

The SR flip-flop
Al l of the circu its so fa r encountered in this book have been combinational circuits. For
such a circuit the output is dependent only on the input values. An alternative type of circu it
is a sequential circuit where the output depends on the input an d on the previous output.

Combinational circuit: a circuit in which the output is dependent on ly on the input values

Sequential circuit: a circuit in which the output depends on the input values and the previous output

- - - - -- -- - -

· Chapter 18: Boolean Algebra and Logic Circuits

The SR flip-flop or 'latch' is a simple example of a sequential circuit.
It can be constructed with two NAND gates or two NOR gates. Figure
18.05 shows the version with two NOR gates. The flip-flop is a two-
state device. Either it has Q set to 1 and Q' set to O or it has the reverse.

The truth table for the circui t can be presented as shown in Table
18.04. The two lines of the truth table where both Sand Rare
input as O produce no change in the values set fo r Q or Q'. This is
the condit ion when no signal is input to the flip -flop. Input of S = 1
and R = 0 always produces Q = 1 and Q' = 0. Input of S = 0 and R = 1
always produces the reverse.

Th is explains why the SR flip-flop can be used as a storage device
for 1 bit and the refore could be used as a component in RAM
because a value is stored but can be altered . The circuit must
be protected from receiving input on Rand S simultaneously
because this leads to an invalid state with both Q and Q' set to 0.

The JK flip-flop
In add ition to the possibi lity of entering an invalid state there
is also the potential for a circuit to arrive in an uncertain state if
inputs do not arrive quite at the same time. In order to prevent
this, a circuit may include a clock pulse input to give a better
chance of synchronising inputs. The JK flip-flop is an example.

The JK flip-flop can be illustra ted by the symbol shown in Figure
18.06(a). A possible ci rcu it is shown in Figure 18.06(b).

(a) (b)

Figure 18.06 (a) A symbol for a JK flip-flop and (b) a possible circuit

The wo rkings of the circuit are viewed in terms of the value of
the Q output immediately after the circui t detects a clock pu lse.
The J input acts as a set input and the Kasa clear so t here is
some sim ilarity to the functioning of the SR fl ip-flop. However, if
both J and Kare input as a 1 then Q always switches value. The
significant part of the truth table is shown as Table 18.05.

18.03 Boolean algebra applications
The Boolean algebra representation of a truth table

Figure 18.05 A circuit for an SR flip-flop using
NOR gates

Input signals Initial state Final state

s R Q Q' Q Q'
0 0 1 0 1 0

1 0 1 0 1 0

0 1 1 0 0 1

0 0 0 1 0 1

1 0 0 1 1 0

0 1 0 1 0 1

Table 18.04 A representation of a truth table for an
SR flip-flop

J K Clock Q

0 0 t Q unchanged

1 0 t 1

0 1 t 0

1 1 t Q toggles

Table 18.05 Part of the truth table for a JK
flip-flop

One approach to creating a Boolean algebra expression for a particular problem is to start
with the t ru th table and app ly the sum of products method. This establishes a minterm for
each row of the table that results in a 1 for the ou t put.

I

Cambridge International AS and A level Computer Science

This can be illustrated using the truth table for the half adder circuit shown in Figure 18.02.
The only row of the table creating a 1 output for Chas a 1 input for A and for B. The product
becomes A.Band the sum has only this one term so we have:

C=A.B

For the S output, there are two rows that produce a 1 output so there is a sum of two
minterms:

S =A.B + A.B

Note that the O in a row is represented by the inverse of the input symbol.

The Boolean algebra representation of a logic circuit
This approach can also be used as pa rt of the process of creat ing a Boolean algebra logic
expression from a circuit diagram. The truth tables for t he ind ividual logic gates are used and
then some algebraic simplification is applied.

WORKED EXAMPLE 18.02

Creating a Boolean algebra logic expression from a half adder circuit

For convenience Figure 18.02 is reproduced here as Figure 18.07. Examination of the figure
shows inputs A and B to a NANO gate with output W.

A ____. __ __.-...__ W

B -.----;_ _ _,.

Figure 18.07 A half adder circuit

s

C

The first t hree rows of the NANO truth table produce a 1 output so t he sum of products
has t hree minterms:

W = A.B+ A.B + A.B

We can now co nsider the input of W to a NANO gate with A as t he other input to produce
t he X output. The NANO gate operates as an AND gate followed by a NOT gate. The resu lt
of t he AND operation is the product of the inputs so:

X = A.(A.B+ A.B + A.BJ

App lying the distributive and inverse laws now gives:

X = 0 + 0 + A.A.B which is simply A.B

We have to take the inverse of th is to complete the NANO operat ion. This is where we need
the AND version of De Morgan's law, wh ich t ransforms the A.El into A+B.

The same laws applied to t he output Y from the other intermediate NANO gate to give

Y= A+B.

t Chapter 18: Boolean Algebra and Logic Circuits
:.·

Finally, we need to consider A+B and A+B being input to the final NAND gate. Again we can
consider the AND operation first as the product of the inputs:

S= (A+B).(A+B)

If we pause to think we will not multiply this out but instead we will apply De Morgan's law
directly to this to perform the inverse operation to complete the NAND operation. This
gives:

S=A.B+A.B

This is the value obta ined directly from the truth table so the algebra has been used
correctly.

Extension question 18.01
Worked Example 18.02 did not show that the circuit produced t he correct ou tput for C. Also a
shortcut was used to reach the fina l form of S. Can you use Boo lean algebra to find the form
of C from the circuit and can you convert the expression for S if you start by using the
distribut ive law before applying De Morgan's law?

18.04 Karnaugh maps (K-maps)
A Ka rna ugh map is a method of creating a Boolean algebra
expression from a truth table. It ca n make the process much easier
than if you use sum-of-products to create minterms. The truth table
for an OR gate, shown as Table 18.06, can be used to illustrate the
method.

A

0

0

1

1

B

0

1

0

1

X

0

1

1

1

Using t he sum-of-products approach gives the following expression
for X:

Table 18.06 The truth table
for the OR operand

X = A.B + A. B + A.B

This is not instant ly recognisable as A+B but, w it h a little effort, using
Boolean algebra laws it could be shown to be the same.

The Karna ugh map approach is simpler. The corresponding K-map is
shown in Figure 18.08. Each cell in a Karna ugh map shows the value
of the output X for a combinat ion of input values for A and B.

The interpretation of a Karna ugh map follows these ru les:

• Only cells containing a 1 are considered.

• Groups of cells conta ining l s are identified where possible, with a
group being a row, a column or a rectangle.

• Groups must contain 2, 4, 8 and so on ce lls.
• Each group should be as large as possible.
• Groups can overlap.

B

Figure 18.08 AK-map of
the truth table in Table 18.06

• If an individual cel l cannot be contained in any group it is treated as being a group.
• Within each group, the only in put values retained are t hose wh ich retain a constant value

th roughout the group.

-------- - -- - -

I

•

Cambridge International AS and A level Computer Science

These rules define a column and a row group as indicated by the blue outl ines. In the co lumn
group, B remains unchanged but A changes so Bis retained. In the row group, it is A that
rema ins unchanged . The Boolean algebra expression is then just the sum of these retained
values:

X= A+B

Thus the Karna ugh map has found t he OR expression without using any algebra .

WORKED EXAMPLE 18.03

Using a K-map to interpret a three-input problem
Let's consider the truth tab le shown in Table 18.07.

A B C X
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Table 18.07 A sample truth table with three inputs

Before starting any application of a method it is always worth looking to see if there are
any trends . In this case you can see that whenever B = 1 the output for Xis 1. This means
that the final algebra shou ld have B + someth ing.
Applying sum of products gives the following five-minterm expression:

A. B .C + A.B . C + A.B.C + A.B. C + A.B.C

There are options for how the K-map is presented. We will choose to combine input values
in the columns. Figure 18.09 shows the result. This fol lows the convention of having the
rows corresponding to values of A and the columns to combinations of values for Band C.

BC 00 01 11 10
A

--, r - -
I I

0 1 1 0 1 11
I I

- - .J L--

1 0 0 1 1

Figure 18.09 AK-map representation of the truth table shown in Table 18.07

It is important to note that the labe lling of the co lumns does not follow a binary va lue
pattern. Instead it follows the Gray cod ing sequence, where only one bit changes value
each time.

i

I

- -- - - - - - - - -

Chapter 18: Boolean Algebra and Logic Circuits

Following the rules stated above, the first group to identify is the square of four cells with
a value 1 as identified by the blue rectangle in the diagram. For these it can be seen that
A has different values, B has a constant value but C changes values. So, only B is retained.
Note th is was anticipated from the initial inspection of the truth table.

This apparently only leaves the top left cell. It looks like an isolated cell but it is not
because K-maps wrap round . The cell is defined by BC= 00. This has two adjacent cells
under Gray coding ru les. One is immediately obvious - BC = 01 but th is contains O so
ca n be ignored. The other adjacent cell is the BC= 10 comb inat ion. Thus, there is a row
group containing BC= 00 and BC= 10, indicated by the dotted line partia l group outlines.
Note that we cannot include the 11 cell in the same row because a group cannot conta in
three members. For this row, the value A remains unchanged, B changes but C remains
unchanged so the product A. C results. So by add ing this to the B for the other group the
final expression becomes:

A.C+ B

This is much simpler tha n the expression with five minterms derived directly from the t ruth
table.

Extension question 18.02
Consider the Karna ugh map shown in Figure 18.10. This corresponds to a problem with four
inputs. It wraps round horizontal ly and vertically. Use the map to create a Boolean algebra
expression .

CD 00 01 11 10
AB

00 1 0 1 1

01 0 0 1 1

11 0 0 1 1

10 1 0 0 0

Figure 18.10 A K- map for a four input problem

---- - - - - - - - -- - --

•

Cambridge International AS and A level Computer Science

• There are Boolean algebra laws that can be used to simplify logic expressions.

• Binary addition can be carried out using a half adder or a full adder circuit.

• SR or JK flip-flop circuits can be used to store a bit value.

• The sum-of-products method can be used to create an equivalent logic expression containing
minterms from a truth table.

• A Karnaugh map is a representation of a truth table that allows a simplified logic expression to be
derived from a truth tab le.

Exam-style Questions
1 a Consider the following circuit:

A ------<1>---1

s

Identify t he t hree different logic gates used.

ii Complete the fo llowing truth table for the circuit for t he inputs shown fo r A and B:

Inputs Working space Outputs

A B s R

0 0

0 1

1 0

1 1

b For the circu it shown in pa rt (a), identi fy the type of circuit and what the outputs represent

2 a Consider the fol lowing truth tab le:

A B X

0 0 1

0 1 0

1 0 1

1 1 1

[2]

[5]

[3]

Using the sum-of-products approach, create a Boolean expression that matches the logic. [3]

- ---- - - --- ---- ---

\ Chapter 18: Boolean Algebra and Logic Circuits

ii For the rows that have A= 1, the outpu t for Xis 1. Explain how th is wou ld be reflected in a simplified form
of Boolean express ion matching the truth table.

b Consider t he following circuit:

X

Using your knowledge of the truth table for an AND gate, create a Boolean algebra
expression for the out put from the first AND gate.

ii Carry out t he same exercise for t he OR gate in the ci rcuit.

iii Using De Morgan's law, create the logic exp ression for the output from the NOT gate.

3 a Consider the following truth table:

A B X
0 0 1
0 1 0
1- 0 1
1 1 1

Create a Karna ugh map to match this truth table.

ii Use the Ka rna ugh map to create a Boolean algebra expression fo r th is logic.

b Consider the truth table shown in 3 a.

Use the sum-of-products method to create a Boolean algebra expression from the truth tab le.

ii Use Boo lean algebra to show that this expression can be simpl ified to give the same expression created

[2]

[2]

[3]

[4]

[4]

[3]

[3]

from the Karna ugh map. {Hint: you might w ish to use the fact that A.B = A.B + A.B). [4]

I

