
Learning objectives 
By the end of this chapter you should be able to: 

• show understanding of why user-defined types are 
necessary 

• define composite and non-composite types 
• show understanding of methods of file organisation and 

of file access 
• select an appropriate method of file organisation and file 

access for a given problem 
• describe the format of binary floating-point real numbers 
• normalise floating-point numbers and show 

understanding of the reasons for normalisation 

• show understanding of the effects of changing the 
allocation of bits to mantissa and exponent in a floating-
point representation 

• convert binary floating-point real numbers into denary 
and vice versa 

• show understanding of the consequences of a binary 
representation only being an approximation to the real 
number it represents and that binary representations can 
give rise to rounding errors 

• show understanding of how underflow and overflow can 
occur. 



' r 
r 

- - - - - - --- -- --- - -

Chapter 16: Data Representation 

16.01 User-defined data types 
This chapter must start wi t h a clarification . It is generally accepted that a programmer wri tes 
a program which is to be used by a 'use r' in the same way that an operating system provides 
a 'user' interface. However, in the act ivity of programming the programmer now becomes the 
'user' of the programming language. The term 'user-defined data type' applies to t his latter 
type of user. 

Non-composite user-defined data types 
A non-composite data type has a definition which does not involve a reference to anothe r 
type. The simple built-in types such as integer or rea l are obvious exam ples. When a 
programmer uses a simple bui lt-i n type t he only requi rement is for an ident ifier to be named 
with a defined type. A user-defined type has to be expl ici tly defined before an identifier can 
be created. Two examples are discussed here. 

Enumerated data type 
An enumerated data type defines a list of possib le va lues. The follow ing pseudocode 
shows two examp les of type defini tions: 

TYPE 
TDirections = (North , Ea s t , South, Wes t ) 
TDay s = (Monday, Tuesday, Wednesday, Thurs day, Friday, Saturday, Sunday ) 

Variables ca n then be declared and assigned values, for example: 

DECLARE Directionl : TDirections 
DECLARE StartDay : TDays 
Directionl North 
StartDay Wednesday 

It is important to note t hat the values of the enumerated type look like st ring values but they 
are not. They must not be enclosed in quote marks. 

The values defined in an enumerated data type are ordina l. This means that they have an 
implied order of values. This makes the second example much more usefu l because t he 
ordering can be put to many uses in a program. For example, a compa rison statement can be 
used wit h t he values and va riables of t he enumerated dat a type: 

DECLARE Weekend : Boolea n 
DECLARE Day : TDays 
Weekend= TRUE IF Day> Frid a y 

Enumerated data type: a list of possible data values 

Pointer data type 
A pointer data type is used to reference a memory location. It may be used to const ruct 
dynamically varyi ng data structures. 

I 



Cambridge International AS and A level Computer Science 

The pointer definition has to re late to t he type of t he variable t hat is being poin ted to. The 
pseudocode for the defini t ion of a pointe r is illustrated by: 

TYPE 
TMyPointer = A<Type name > 

Decla rat ion of a variab le of pointer type does not requi re t he ca ret symbol {1'1) to be used: 

DECLARE MyPointer : TMyPointer 

A special use of a poin ter variable is to access the value stored at t he address poi nted to. The 
pointer variable is sa id to be 'dereferenced': 

ValuePointe dTo MyPointerA 

Composite user-defined data types 
A composi te user-defined data type has a defin ition with reference to at least one other type. 
Three exa mples are co nsidered here. 

Record data type 
A record data type is t he most useful and therefore most widely used. It al lows the 
programmer to collect together values with different data types when these fo rm a coherent 
whole. 

Record data type: a data type that conta ins a fixed number of components, which can be of different 
types 

As an example, a record could be used for a program using employee data. Pseudocode for 
defi ning the type could be: 

TYPE 
TEmployeeRecord 

DECLARE EmployeeFirstName : STRING 
DECLARE EmployeeFamilyName : STRING 
DECLARE DateEmployed : DATE 
DECLARE Salary : CURRENCY 

ENDTYPE 

An individual data item can th en be accessed using a dot notation: 

Employ eel.DateEmployed #16/05/ 2017# 

A part icular use of a record is fo r the im plementat ion of a data structure where one or 
possi bly two of the variables defined are poi nter va riab les. 

Set data type 
A set data type allows a program to create sets and to apply the mathematica l operat ions 
defined in set t heory. The fol lowing is a representative list of the operations to be expected : 

un ion 
• difference 

intersect ion 



' 
Chapter 16: Data Representation 

• include an element in the set 
• exclude an element from the set 
• check whether an element is in a set. 

Objects and classes 
In object-oriented programming, a program defines the classes to be used - they are all 
user-defined data types. Then for each class the objects must be defined. Chapter 27 
(Section 27.03) has a full discussion of this subject. 

Why are user-defined data types necessary? 
When object-oriented programming is not being used a programmer may choose not to use 
any user-defined data types. However, for any reasonably large program it is like ly that their 
use wi ll make a program more understandable and less error-prone. Once the programmer 
has decided because of this advantage to use a data type that is not one of the built-in types 
then user-definition is inevitable. The use of, for instance, an intege~ va riab le is the same 
fo r any program. However, there cannot be a bu ilt-in record type because each different 
problem wi ll need an individual definition of a record . 

16.02 File organisation 
In everyday computer usage, a wide variety of f ile types is encountered . Examples are graphic 
files, word -processing files, spreadsheet files and so on . Whatever the file type, the content is 
stored using a defined binary code that allows the file to be used in the way intended. 

For the very specific task of storing data to be used by a computer program, there are only 
two defined file types. A file is either a text file or a binary file. A text file, as discussed in 
Chapter 13 (Section 13.09), contai ns data stored according to a defined character code as 
defined in Chapter l (Section 1.03). It is possible, by using a text editor, to create a text file. 
A binary file stores data in its internal representation, for examp le an integer value might be 
stored in two bytes in two's complement representat ion. This type of file wi ll be created using 
a specific program. 

The organisation of a binary file is based on the concept of a record. A file contains records 
and each record contains fields . Each field consists of a value. 

Binary file: a file designed for storing data to be used by a computer program 

Record: a col lection of fields containing data values 

Discussion Point: 
A record is a user-defined data type. It is also a component of a file. Can there be or should 
there be any re lationship between these two concepts? 

Serial files 
A seria l file contains records which have no defined order. A typical use of a seria l file would 
be for a bank to record transactions invo lving customer accounts. A program would be 
running. Each time there was a withdrawa l or a deposit the program would receive the 

----- -- --- - - - - -----

I 



Cambridge International AS and A level Computer Science 

details as data input and would record these in a transaction file. The records would enter 
the file in chronological order but otherwise the file would have no ordering of the records. 

A text file can be considered to be a type of serial file but it is different because the file has 
repeating lines which are defined by an end-of-line character or characters. There is no end-
of-record character. A record in a serial file must have a defined format to allow data to be 
input and output correctly. 

Sequential files 
A sequential file has records that are ordered. It is the type of file suited to long-term 
storage of data. As such it should be the type of file that is considered as an alternative to a 
database. The discussion in Chapter 10 (Section 10.01) compared a text f ile wi th a database 
but the arguments for using a database remain the same if a sequential file is used for the 
comparison. In the banking scenario, a sequential file could be used as a master file for an 
individual customer account. Periodica lly, the transaction file would be read and all affected 
customer account master files wou ld be updated. 

In order to allow the sequential file to be ordered there has to be a key field for which the 
values are unique and sequential bu t not necessarily consecutive. It is worth emphasising 
the difference between key fields and primary keys in a database table, where the values 
are req ui red to be unique but not to be sequential. In a sequentia l fi le, a particular record is 
found by sequentially read ing the va lue of the key fie ld until the required value is found. 

Direct-access files 
Direct-access files are sometimes referred to as 'random-access' files but, as with random-
access memory, the randomness is on ly that the access is not defined by a sequential 
reading of the file. For large files, direct access is attractive because of the time that would 
be taken to search through a sequentia l file. In an ideal scenario, data in a direct-access file 
would be stored in an identifiable record which could be located immediately when required. 
Unfortunately, this is not possible. Instead, data is stored in an identifiable record but finding 
it may involve an initial direct access to a nearby record fo llowed by a limited seria l search. 

The choice of the position chosen for a record must be calculated using data in the record 
so that the same calcu lation can be carried out when subsequently there is a search for 
the data . The normal method is to use a hashing algorithm. This takes as input the value 
for the key field and outputs a va lue for the position of the record relative to the start of the 
file. The hashing algorithm must take into account the potential maxi mum length of the file, 
that is, the number of records the fi le wil l store. A simple example of a hash ing algorithm, if 
the key field has a numeric va lue, is to divide the value by a suitably large number and use 
the remainder from the division to define the position. This method will not create unique 
positions. If a hash position is calculated that dup licates one already ca lculated by a different 
key, the next position in the file is used. This is why a search wi ll involve a direct access 
possibly followed by a limited serial search . 

File access 
Once a file organisation has been chosen and the data has been entered into a file, the 
question now to be considered is how this data is to be used. If an individual data item is to 
be read then the access method fo r a serial file is to successively read reco rd by record until 
the required data is found. If the data is stored in a sequential file the process is similar but 
only t he value in the key field has to be read . For a direct-access file, the value in the key field 

--- ----- --- -- -- --------------- -------



. Chapter 16: Data Representation 
' 

is submitted to the hashing algorithm which t hen provides t he same value for the posit ion in 
the file that was provided when the algorithm was used at the t ime of data input. 

File access might also be needed to delete or edit data. The normal approach with a 
sequential file is to create a new version of the file. Data is copied from the old f ile to the new 
file unt il the record is reached wh ich needs de leting or edit ing. If deletion is needed, readi ng 
and copying of the old file continues from t he next record. If a reco rd has changed, an edited 
vers ion of the record is written to the new file and then the rema ining records are cop ied to 
t he new file. For a direct-access file t here is no need to create a new file (un less the file has 
become full) . A deleted record can have a flag set so that in a subsequent reading process the 
record is skipped over. 

Seria l fil e organisation is well suited to batch processing or for backing up data on magnetic 
tape. However, if a program needs a file in which individual data items might be read, 
updated or deleted then direct-access file organisation is the most suitable and serial fi le 
organ isat ion the least suitable. 

16.03 Real numbers 
A real number is one with a fract ional part. Whe n we write down a va lue for a real number in 
t he de nary system we have a cho ice. We can use a simple representation or we can use an 
exponential notation (sometimes referred to as scientific not ation). In this latter case we have 
options. For example, t he number 25.3 might alternatively be written as: 

.253 x 102 or 2.53 x 101 or 25.3 x 10° or 253 x 10-1 

For this number, t he simple expression is best but if a number is ve ry la rge or very sma ll the 
exponentia l notation is the only sensible choice. 

Floating-point and fixed-point representations 
A bina ry code must be used for storing a real nu mber in a computer system . One possibili ty is 
to use a fixed-po int representation . In this option, an overall number of bit s is chosen with a 
defined number of bits for the who le number part and t he remainder fo r t he fractional pa rt. 
The alternative is a floating-point representation. The format for a float ing-point number 
can be generalised as: 

In this option a defined number of bits are used for what is ca lled the significand or mantissa, 
±M. The remain ing bits are used for t he exponent or exrad, E. The radix, R is not stored in the 
representation; it has an implied value of 2. 

Floating-point representation: a representation of rea l numbers that stores a value fo r the mantissa 
and a value for the exponent 

To il lustrate the differences between the two representations a very simple example can be 
used . Let's consider that a rea l number is to be stored in eight bi t s. 

For the fixed-point option, a possible choice would be to use the most significant bit as a sign 
bi t and the next f ive bits fo r the whole number part leaving two bits for the fract ional part. 

• 



Cambridge International AS and A level Computer Science 

Some important non-zero values in this representation are shown in Table 16.01. (The bits are 
shown with a gap to indicate the implied position of the binary point.) 

Description Binary code Denary equivalent 
Largest positive value 01111111 31.75 
Smallest positive value 000000 01 0.25 
Smallest magnitude negative value 100000 01 -0.25 
Largest magn itude negative value 11111111 -31.75 

Table 16.01 Example fixed-point representations (using sign and magnitude) 

For a floating-point representation, a possible choice would be four bits for the mantissa and 
four bits for the exponent wi t h each using two's complement representation . The exponent 
is stored as a signed integer. The mantissa has to be stored as a fixed-point real value. The 
question now is where the binary point should be. 

Two of the opt ions for the mantissa being expressed in four bits are shown in Table 16.02(a) 
and Table 16.02(b). In each case, the de nary equivalent is shown and the position of the 
implied binary point is shown by a gap. Table 16.02(c) shows the three la rgest magnitude 
positive and negative values for integer cod ing that will be used for the exponent. 

a) b) c) 
First bit pattern Real value Second bit Real Integer bit Integer value 
for a real value in denary pattern for a va lue in pattern in denary 
0111 3.5 real value denary 0111 7 
0110 3.0 0111 .875 0110 6 
010 l 2.5 0110 .75 0101 5 
1010 -3.0 0101 .625 1010 -6 
100 l -3.5 l 010 -.75 1001 - 7 
100 0 -4.0 l 001 -.875 1000 - 8 

l 000 - 1.0 

Table 16.02 Coding a fixed-point real va lue in eight bits (four for the mantissa and 
four for the exponent) 

It can be seen that having the mantissa with t he implied binary point immediately following 
the sign bit produces smaller spacing between the values that can be represented. This is the 
preferred option for a floating-point representation. Using t his option, the most important 
non-zero values for the float ing-point representation are shown in Tab le 16.03. (The impl ied 
binary point and the mantissa exponent separation are shown by a gap.) 

Description Binary code Denary equivalent 
Largest posit ive value 0 1110111 .875 X 27 = 112 
Smallest positive value 0 0011000 .125 X 2-s = 1/2048 
Smallest magnitude negative value 11111000 - .125 X 2-a = - 1/2048 

Largest magn itude negative value l 000 0111 -1 X 27 = - 128 

Table 16.03 Example floating-point representations 

The comparison between the values in Tables 16.01 and 16.03 illustrate the greater range of 
posit ive and negative values ava ilable if float ing-point representation is used. 



-

Chapter 16: Data Representation 

Extension question 16.01 
1 Using the methods suggested in Chapter 1 (Section 1.01) can you confirm for yourself that 

the denary equivalents of the binary codes shown in Tables 16.02 and Table 16 03 are as 
indicated? 

2 Can you also confirm that conversion from positive to negative or vice versa for a fixed -
format real value still follows the rules defined in Chapter 1 (Section 1.02) for two's 
complement representation . 

Precision and normalisation 
In principle a decision has to be made about the format of a floating-point representation 
both with regard to the total number of bits to be used and the split between those 
represent ing the mantissa and those representing the exponent. In practice, a choice for 
the total number of bits to be used will be ava ilable as an option when the program is 
written. However, the split between the two parts of the representation will have been 
determined by the float ing-point processor. If you did have a choice you would base a 
decision on the fact that increasing the number of bits for the mantissa would give better 
precision for a value stored but would leave fewer bits for the exponent so reducing the 
ra nge of possible values . 

In order to achieve maximum precision, it is necessary to normalise a floating-point number. 
(This normalisation is totally unrelated to the process associated with designing a database.) 
Since precision increases with an increasing number of bits for the mantissa it follows that 
optimum precision will only be achieved if fu ll use is made of these bits. In practice, that 
means using the largest possible magn itude for the value represented by the mantissa. 

To illustrate this we can consider the eight-bit representation used in Table 16.03. Table 16.04 
shows possible representations for denary 2 using this representation. 

Denary representation Floating-point binary representation 
0.125 X 24 0 0010100 
0.25 X 23 0 010 OOll 
0.5 X 22 0100 0010 

Table 16.04 Alternative representations of denary 2 using four bits each for mantissa and exponent. 

For a negative number we can consider representations for -4 as shown in Table 16.05. 

Denary representation Floating-point binary representation 

- 0.25 X 24 l llO 0100 
- 0.5 X 23 1100 OOll 
-1.0 X 22 1000 0010 

Table 16.05 Alternative representations of denary-4 using four bits each for mantissa and exponent. 

It can be seen that when the number is represented with the highest magnitude fo r the 
mantissa, the two most significant bits are different. This fact can be used to recogn ise that 
a number is in a normalised representation. The values in these tables also show how a 
number could be normal ised. For a positive number, the bits in the mantissa are shifted left 
until the most significant bits are O followed by 1. For each shift left the va lue of the exponent 
is reduced by 1. 

I 



Cambridge International AS and A level Computer Science 

The same process of shifting is used for a negative number until the most significant bits are 
1 followed by 0. In this case, no attention is paid to the fact that bits are falling off the most 
significant end of the mantissa. 

Conversion of representations 
In Chapter 1 (Section 1.01), a number of methods for converting numbers into different 
representations were discussed . The ideas presented there now need a little expansion. 

Let's start by considering the conversion of a simple real number, such as 4.75, into a simple 
f ixed-point binary representation. This looks easy because 4 converts to 100 in binary and .75 
converts to .11 in binary so the binary version of 4.75 should be: 

100.11 

However, we now remember that a positive number should start with 0. Can we just add a 
sign bit? For a positive number we can . Denary 4.75 can be represented as 0100.11 in binary. 

For negative numbers we still want to use two's complement form. So; to f ind the 
representation of-4.75 we can start with the representation for 4.75 then convert it to two's 
complement as follows: 

0100.11 converts to 1011.00 in one's complement 

then to 1011.01 in two's complement 

To check the result, we can apply Method 2 from Worked Example 1.01 in Chapter 1. 1011 is 
the code for - 8 + 3 and .oi is the code for .25; - 8 + 3 + .25 = - 4.75. 

We can now consider the conversion of a denary value expressed as a real number into a 
floating-point binary representation. The first thing to real ise is that most fractional parts do 
not convert to a precise representation. This is because the binary fractiona l parts represent 
a half, a quarter, an eighth, a sixteenth and so on. Unless a denary fraction is a sum of a 
collection of these values, there cannot be an accurate conversion. In particular, of the values 
from .1 through to .9 only .5 converts accurately. This was mentioned in Chapter 1 (Section 
1.02) in the discussion about storing currency values. 

The method for tonversion of a positive value is as follows: 

1 Convert the whole-number part using the method described in Chapter 1 (Section 1.01). 

2 Add the O sign bit. 
3 Convert the fractional part using the method described in Worked Example 16.01. 
4 Combine the two, with the exponent expressed as zero. 

5 Adjust the position of the binary point and change the exponent accordingly to achieve a 
normalised form. 

WORKED EXAMPLE 16.01 

Converting a denary value to a floating-point representation 
Example 1 
Let's consider the conversion of 8.75: 

1 The 8 converts to 1000, adding the sign bit gives 01000. 

2 The .75 can be recognised as being .11 in binary. 
3 The combination gives 01000.11 which has exponent va lue zero. 

~ ----------- --- -- --- --



Chapter 16: Data Representation 

4 Shifting the binary point gives 0.100011 which has exponent value de nary 4. 

5 The next stage depends on the number of bits defined for the mantissa and the 
exponent; if ten bits are allocated for the mantissa and four bits are allocated for the 
exponent the final representation becomes 0100011000 for the mantissa and 0100 for 
the exponent. 

Example 2 
Let's consider the conversion of 8.63 . The first step is the same but now the .63 has to be 
converted by the 'multip ly by two and record whole number parts' method. This works as 
follows: 

.63 x 2 = 1.26 so 1 is stored to give the fraction .1 

.26 x 2 = .52 so O is stored to give the fract ion .10 

.52 x 2 = 1.04 so 1 is stored to give the fraction .101 

.04 x 2 = .08 so O is stored to give the fraction .1010 

At this stage it can be seen that multiplying .08 by 2 successively is going to give a lot of 
zeros in the binary fraction before another 1 is added so the process can be stopped. 
What has happened is that .63 has been approximated as .625. So, following Steps 3-5 in 
Example 1, the final representation becomes 0100010100 for the mantissa and 0100 for the 
exponent. 

TASKlG.01 

Convert the denary value -7.75 to a floating-point binary representation with ten bits for the 
mantissa and four bits for the exponent. Start by converting 7.75 to binary (make sure you add 
the sign bit!). Then convert to two's complement form . Finally, choose the correct value for 
the exponent to leave the implied position of the binary point after the sign bit. Convert back 
to den a ry to check the resu It. 

Problems with using floating-point numbers 
As il lustrated above, the conversion of a real value in de nary to a binary representation 
almost guarantees a degree of approximation. This is then added to by the restr iction of the 
number of bits used to store the mantissa. 

Many uses of floating-point numbers are in extended mathematical procedures involving 
repeated calculations. Examples of such use would be in weather forecasting using a 
mathematica l model of the atmosphere or in economic forecast ing. In such programming 
there is a slight approximation in recording the result of each calculation . These so-called 
rounding errors can become significant if calculations are repeated enough times. The 
only way of preventing this becoming a serious problem is to increase the precision of the 
float ing-point representation by using more bits for the mant issa. Programming languages 
therefore offer options to work in 'double precision' or 'quadruple precision'. 

The other potential problem relates to the range of numbers that can be stored. Referring 
back to the simple eight-bit representation illustrated in Table 16.03, t he highest value 
represented is denary 112. A calculation can easily produce a value higher than this. As 
Chapter 5 (Sect ion 5.02) illustrated, this produces an overflow error condition. However, for 

------ ---

I 



Cambridge International AS and A level Computer Science 

floa t ing-point values there is also a possibil ity that if a very small number is divided by a 
number greater than 1 the result is a value smaller than the sma llest that can be stored. This 
is an underflow error condition . Depending on the circumstances, it may be possible for a 
program to continue running by converting this very small number to zero but clearly this 
must involve risk. 

• Examples of non-composite user-defined data types include enumerated and pointer data types. 

• Record, set and class are examples of composite user-defined data types. 

• File organisation allows for serial, sequential or direct access. 

• Floating-point representation for a real number allows a wider range ofvalues to be represented. 

• A normalised floating-point representation achieves optimum precision for the value stored. 

• Stored floating-point values rarely give an accurate representation of the denary equivalent. 

Exam-style Questions 
1 A programmer may choose to use a user-defined data type when writing a program. 

a Give an example of a non-composite user-defined data type and expla in why its use by a programmer is 
different to the use of an in-built data type. 

b A program is to be written to handle data relat ing to the animals kept in a zoo. The programmer chooses to 
use a record user-defined data type. 

Explain what a record user-defined data type is. 

ii Explain the advantage of using a record user-defined data type. 

iii Write pseudocode for the defin ition of a record type which is to be used to store: animal name, an imal age, 
number in zoo and location in the zoo. 

2 a A binary file is to be used to store data for a program. 

What are the terms used to describe the components of such a file. 

ii Explain the difference between a binary file and a text file . 

b A binary file might be organised for serial, sequential or direct access. 

Explain the difference between the three types of file organisat ion . 

ii Give an example of file use for wh ich a seria l file organisation would be su itable. Justify you r choice. 

iii Give an examp le of file use when direct access would be advantageous. Justify your choice. 

[3] 

[2] 

[2] 

[5] 

[2] 

[3] 

[4] 

[3] 

[3] 



. Chapter 16: Data Representation 
:,. 

3 A file contains binary coding. The following are four successive bytes in the file: 

10010101 1 00110011 1 I 11001000 1 1 00010001 1 

a The four bytes represent two numbers in floating-point representation. The first byte in each case represents 
the mantissa. Each byte is stored in two's complement representation. 

Give the name for what the second byte represents in each case. [l] 

ii State whether the representations are for two posit ive numbers or two negative numbers and explain why. [2] 

iii One of the numbers is in a normalised representation. State which one it is and give the reason why. [2] 

iv State where the implied binary point is in a normalised representat ion and explain why a normalised 
representation gives better precis ion for the value represented . 

v If two bytes were still to be used but the number of bits for each component was going to be changed by 
allocating more to the mantissa, what effect would this have on the numbers that could be represented? 
Explain your answer. 

b Using the representation described in part (a), Show the representation of denary 12.43 as a floating-point 
binary number. 

[3] 

[2] 

[5] 

• 


	Scan261 (20 files merged).pdf (p.261-280)

