Advanced Theory

Data Representation

Learning objectives

By the end of this chapter you should be able to:

® show understanding of why user-defined types are

necessary
define composite and non-composite types

show understanding of methods of file organisation and
of file access

select an appropriate method of file organisation and file
access for a given problem
describe the format of binary floating-point real numbers

normalise floating-point numbers and show
understanding of the reasons for normalisation

show understanding of the effects of changing the
allocation of bits to mantissa and exponent in a floating-
point representation

convert binary floating-point real numbers into denary
and vice versa

show understanding of the consequences of a binary
representation only being an approximation to the real
number it represents and that binary representations can
give rise to rounding errors

show understanding of how underflow and overflow can
occur.




Chapter 16: Data Representation

16.01 User-defined data types

This chapter must start with a clarification. Itis generally accepted that a programmer writes
a program which is to be used by a ‘user’ in the same way that an operating system provides
a ‘user’ interface. However, in the activity of programming the programmer now becomes the
‘user’ of the programming language. The term ‘user-defined data type’ applies to this latter
type of user.

Non-composite user-defined data types

A non-composite data type has a definition which does not involve a reference to another
type. The simple built-in types such as integer or real are obvious examples. When a
programmer uses a simple built-in type the only requirement is for an identifier to be named
with a defined type. A user-defined type has to be explicitly defined before an identifier can
be created. Two examples are discussed here.

Enumerated data type

An enumerated data type defines a list of possible values. The following pseudocode
shows two examples of type definitions:

TYPE
TDirections = (North, East, South, West)
TDays = (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday)

Variables can then be declared and assigned values, for example:

DECLARE Directionl : TDirections
DECLARE StartDay : TDays

4 Directionl <« North

StartDay <« Wednesday

are not. They must not be enclosed in quote marks.

The values defined in an enumerated data type are ordinal. This means that they have an
implied order of values. This makes the second example much more useful because the
ordering can be put to many uses in a program. For example, a comparison statement can be

' [tis important to note that the values of the enumerated type look like string values but they
F
k used with the values and variables of the enumerated data type:

DECLARE Weekend : Boolean
DECLARE Day : TDays
Weekend = TRUE IF Day > Friday

Enumerated data type: a list of possible data values

Pointer data type
A pointer data type is used to reference a memory location. It may be used to construct
dynamically varying data structures.

—

|HHH



Cambridge International AS and A level Computer Science

The pointer definition has to relate to the type of the variable that is being pointed to. The
pseudocode for the definition of a pointer is illustrated by:

TYPE
TMyPointer = “<Type name>

Declaration of a variable of pointer type does not require the caret symbol (*) to be used:
DECLARE MyPointer : TMyPointer

A special use of a pointer variable is to access the value stored at the address pointed to. The
pointer variable is said to be ‘dereferenced”.

ValuePointedTo « MyPointer”

Composite user-defined data types

A composite user-defined data type has a definition with reference to at least one other type.
Three examples are considered here.

Record data type

Arecord data type is the most useful and therefore most widely used. It allows the
programmer to collect together values with different data types when these form a coherent
whole.

Record data type: a data type that contains a fixed number of components, which can be of different
types

As an example, a record could be used for a program using employee data. Pseudocode for
defining the type could be:
TYPE
TEmployeeRecord
DECLARE EmployeeFirstName : STRING
DECLARE EmployeeFamilyName : STRING
DECLARE DateEmployed : DATE

DECLARE Salary : CURRENCY
ENDTYPE

Anindividual data item can then be accessed using a dot notation:
Employeel.DateEmployed <« #16/05/2017#

A particular use of a record is for the implementation of a data structure where one or
possibly two of the variables defined are pointer variables.

Set data type

A set data type allows a program to create sets and to apply the mathematical operations
defined in set theory. The following is a representative list of the operations to be expected:
e union

» difference

e intersection



Chapter 16: Data Representation

o include an elementin the set
o exclude an element from the set

o check whether an elementisin a set.

Objects and classes

In object-oriented programming, a program defines the classes to be used - they are all
user-defined data types. Then for each class the objects must be defined. Chapter 27
(Section 27.03) has a full discussion of this subject.

Why are user-defined data types necessary?

When object-oriented programming is not being used a programmer may choose not to use
any user-defined data types. However, for any reasonably large program it is likely that their
use will make a program more understandable and less error-prone. Once the programmer
has decided because of this advantage to use a data type that is not one of the built-in types
then user-definition is inevitable. The use of, for instance, an integer variable is the same

for any program. However, there cannot be a built-in record type because each different
problem will need an individual definition of a record.

16.02 File organisation

In everyday computer usage, a wide variety of file types is encountered. Examples are graphic
files, word-processing files, spreadsheet files and so on. Whatever the file type, the content is
stored using a defined binary code that allows the file to be used in the way intended.

For the very specific task of storing data to be used by a computer program, there are only
two defined file types. Afile is either a text file or a binary file. A text file, as discussed in
Chapter 13 (Section 13.09), contains data stored according to a defined character code as
defined in Chapter 1 (Section 1.03). It is possible, by using a text editor, to create a text file.

A binary file stores data in its internal representation, for example an integer value might be
stored in two bytes in two’s complement representation. This type of file will be created using
a specific program.

The organisation of a binary file is based on the concept of a record. A file contains records
and each record contains fields. Each field consists of a value.

Binary file: a file designed for storing data to be used by a computer program

Record: a collection of fields containing data values

Discussion Point:

Arecord is a user-defined data type. It is also a component of a file. Can there be or should

there be any relationship between these two concepts?

Serial files

A serial file contains records which have no defined order. A typical use of a serial file would
be for a bank to record transactions involving customer accounts. A program would be
running. Each time there was a withdrawal or a deposit the program would receive the



250

Cambridge International AS and A level Computer Science

details as data input and would record these in a transaction file. The records would enter
the file in chronological order but otherwise the file would have no ordering of the records.

Atext file can be considered to be a type of serial file but it is different because the file has
repeating lines which are defined by an end-of-line character or characters. There is no end-
of-record character. A record in a serial file must have a defined format to allow data to be
input and output correctly.

Sequential files

A sequential file has records that are ordered. It is the type of file suited to long-term

storage of data. As such it should be the type of file that is considered as an alternative to a
database. The discussion in Chapter 10 (Section 10.01) compared a text file with a database
but the arguments for using a database remain the same if a sequential file is used for the
comparison. In the banking scenario, a sequential file could be used as a master file for an
individual customer account. Periodically, the transaction file would be read and all affected
customer account master files would be updated.

In order to allow the sequential file to be ordered there has to be a key field for which the
values are unique and sequential but not necessarily consecutive. It is worth emphasising
the difference between key fields and primary keys in a database table, where the values
are required to be unique but not to be sequential. In a sequential file, a particular record is
found by sequentially reading the value of the key field until the required value is found.

Direct-access files

Direct-access files are sometimes referred to as ‘random-access’ files but, as with random-
access memory, the randomness is only that the access is not defined by a sequential
reading of the file. For large files, direct access is attractive because of the time that would

be taken to search through a sequential file. In an ideal scenario, data in a direct-access file
would be stored in an identifiable record which could be located immediately when required.
Unfortunately, this is not possible. Instead, data is stored in an identifiable record but finding
it may involve an initial direct access to a nearby record followed by a limited serial search.

The choice of the position chosen for a record must be calculated using data in the record
so that the same calculation can be carried out when subsequently there is a search for

the data. The normal method is to use a hashing algorithm. This takes as input the value
for the key field and outputs a value for the position of the record relative to the start of the
file. The hashing algorithm must take into account the potential maximum length of the file,
that is, the number of records the file will store. A simple example of a hashing algorithm, if
the key field has a numeric value, is to divide the value by a suitably large number and use
the remainder from the division to define the position. This method will not create unique
positions. If a hash position is calculated that duplicates one already calculated by a different
key, the next position in the file is used. This is why a search will involve a direct access
possibly followed by a limited serial search.

File access

Once a file organisation has been chosen and the data has been entered into afile, the
guestion now to be considered is how this data is to be used. If an individual data itemis to
be read then the access method for a serial file is to successively read record by record until
the required data is found. If the data is stored in a sequential file the process is similar but
only the value in the key field has to be read. For a direct-access file, the value in the key field



Chapter 16: Data Representation

is submitted to the hashing algorithm which then provides the same value for the position in
the file that was provided when the algorithm was used at the time of data input.

File access might also be needed to delete or edit data. The normal approach with a

sequential file is to create a new version of the file. Data is copied from the old file to the new

file until the record is reached which needs deleting or editing. If deletion is needed, reading

L and copying of the old file continues from the next record. If a record has changed, an edited
version of the record is written to the new file and then the remaining records are copied to

i the new file. For a direct-access file there is no need to create a new file (unless the file has
become full). A deleted record can have a flag set so that in a subsequent reading process the
record is skipped over.

&

4

Serial file organisation is well suited to batch processing or for backing up data on magnetic
tape. However, if a program needs a file in which individual data items might be read,
updated or deleted then direct-access file organisation is the most suitable and serial file
organisation the least suitable.

16.03 Real numbers

Areal number is one with a fractional part. When we write down a value for a real numberin
the denary system we have a choice. We can use a simple representation or we can use an
exponential notation (sometimes referred to as scientific notation). In this latter case we have
options. For example, the number 25.3 might alternatively be written as:

253 %107 of 2.53%10F or 253%10% g 253 %107

For this number, the simple expression is best but if a number is very large or very small the
exponential notation is the only sensible choice.

] Floating-point and fixed-point representations

! A binary code must be used for storing a real number in a computer system. One possibility is

} to use a fixed-point representation. In this option, an overall number of bits is chosen with a
defined number of bits for the whole number part and the remainder for the fractional part.

! The alternative is a floating-point representation. The format for a floating-point number

can be generalised as:

+MxRE

E In this option a defined number of bits are used for what is called the significand or mantissa,
+M. The remaining bits are used for the exponent or exrad, E. The radix, R is not stored in the
representation; it has an implied value of 2.

Floating-point representation: a representation of real numbers that stores a value for the mantissa
and a value for the exponent

To illustrate the differences between the two representations a very simple example can be
used. Let’s consider that a real number is to be stored in eight bits.

For the fixed-point option, a possible choice would be to use the most significant bit as a sign
bit and the next five bits for the whole number part leaving two bits for the fractional part.




Cambridge International AS and A level Computer Science

Some important non-zero values in this representation are shown in Table 16.01. (The bits are
shown with a gap to indicate the implied position of the binary point.)

Description Binary code Denary equivalent

Largest positive value 01111111 3175
Smallest positive value 000000 01 0.25
Smallest magnitude negative value 100000 01 -0.25
Largest magnitude negative value ol 00510 4T ~31.75

Table 16.01 Example fixed-point representations (using sign and magnitude)

For a floating-point representation, a possible choice would be four bits for the mantissa and
four bits for the exponent with each using two’s complement representation. The exponent
is stored as a signed integer. The mantissa has to be stored as a fixed-point real value. The
question now is where the binary point should be.

Two of the options for the mantissa being expressed in four bits are shown in Table 16.02(a)
and Table 16.02(b). In each case, the denary equivalent is shown and the position of the
implied binary point is shown by a gap. Table 16.02(c) shows the three largest magnitude
positive and negative values for integer coding that will be used for the exponent.

a) b) c)

First bit pattern | Realvalue | | Second bit Real Integer bit | Integer value
forarealvalue | indenary pattern fora | valuein pattern in denary
0111 3.5 real value denary 0111

0110 3.0 | 875 0110

010 1 2.5 0110 75! |o101

1010 -3.0 0101 625| | 1010 5
1001 -3.5 1010 -75| [1001 i
1000 -4.0 1001 -.875 1000 =8

1000 -1.0

Table 16.02 Coding a fixed-point real value in eight bits (four for the mantissa and
four for the exponent)

It can be seen that having the mantissa with the implied binary point immediately following
the sign bit produces smaller spacing between the values that can be represented. This is the
preferred option for a floating-point representation. Using this option, the most important
non-zero values for the floating-point representation are shown in Table 16.03. (The implied
binary point and the mantissa exponent separation are shown by a gap.)

Description Binary code Denary equivalent

Largest positive value 0 1110111 875x2'=112
Smallest positive value 0001 1000 125% 2-8=1/2048
Smallest magnitude negative value 11111000 -125%x28=-1/2048
Largest magnitude negative value 10000111 -1x2"=-128

Table 16.03 Example floating-point representations

The comparison between the values in Tables 16.01 and 16.03 illustrate the greater range of
positive and negative values available if floating-point representation is used.




Chapter 16: Data Representation

e R e

Ty R Ty T S e T ey SRS TN ) W W o T TR T ST T ey - W W ey W) ey

Extension question 16.01

1 Usingthe methods suggested in Chapter 1 (Section 1.01) can you confirm for yourself that
the denary equivalents of the binary codes shown in Tables 16.02 and Table 16.03 are as
indicated?

2 Canyou also confirm that conversion from positive to negative or vice versa for a fixed-
format real value still follows the rules defined in Chapter 1 (Section 1.02) for two’s
complement representation.

Precision and normalisation

In principle a decision has to be made about the format of a floating-point representation
both with regard to the total number of bits to be used and the split between those
representing the mantissa and those representing the exponent. In practice, a choice for
the total number of bits to be used will be available as an option when the program is
written. However, the split between the two parts of the representation will have been
determined by the floating-point processor. If you did have a choice you would base a
decision on the fact that increasing the number of bits for the mantissa would give better
precision for a value stored but would leave fewer bits for the exponent so reducing the
range of possible values.

In order to achieve maximum precision, it is necessary to normalise a floating-point number.

(This normalisation is totally unrelated to the process associated with designing a database.)

Since precision increases with an increasing number of bits for the mantissa it follows that

optimum precision will only be achieved if full use is made of these bits. In practice, that

means using the largest possible magnitude for the value represented by the mantissa.

To illustrate this we can consider the eight-bit representation used in Table 16.03. Table 16.04
shows possible representations for denary 2 using this representation.

Denary representation Floating-point binary representation
0.125 x.2* 00010100
0.25x 23 00100011
0.5%2> 01000010

Table 16.04 Alternative representations of denary 2 using four bits each for mantissa and exponent.

For a negative number we can consider representations for —4 as shown in Table 16.05.

Denary representation Floating-point binary representation
-0.25x24 11100100
-0.5%x23 11000011
-1.0x 22 10000010

Table 16.05 Alternative representations of denary —4 using four bits each for mantissa and exponent.

It can be seen that when the number is represented with the highest magnitude for the
mantissa, the two most significant bits are different. This fact can be used to recognise that
anumberisin a normalised representation. The values in these tables also show how a
number could be normalised. For a positive number, the bits in the mantissa are shifted left
until the most significant bits are 0 followed by 1. For each shift left the value of the exponent
isreduced by 1.



Cambridge International AS and A level Computer Science

The same process of shifting is used for a negative number until the most significant bits are
1 followed by 0. In this case, no attention is paid to the fact that bits are falling off the most
significant end of the mantissa.

Conversion of representations
In Chapter 1 (Section 1.01), a number of methods for converting numbers into different
representations were discussed. The ideas presented there now need a little expansion.

Let’s start by considering the conversion of a simple real number, such as 4.75, into a simple
fixed-point binary representation. This looks easy because 4 converts to 100 in binary and .75
converts to .11 in binary so the binary version of 4.75 should be:

100.11

However, we now remember that a positive number should start with 0. Can we just add a
sign bit? For a positive number we can. Denary 4.75 can be represented as 0100.11 in binary.

For negative numbers we still want to use two’s complement form. So; to find the
representation of -4.75 we can start with the representation for 4.75 then convert it to two’s
complement as follows:

0100.11 converts to 1011.00 in one’s complement
then to 1011.01 in two’s complement

To check the result, we can apply Method 2 from Worked Example 1.01 in Chapter 1. 1011 is
the code for -8 +3 and .01 is the code for .25; -8 + 3 + .25 = -4.75.

We can now consider the conversion of a denary value expressed as a real number into a
floating-point binary representation. The first thing to realise is that most fractional parts do
not convert to a precise representation. This is because the binary fractional parts represent
a half, a quarter, an eighth, a sixteenth and so on. Unless a denary fraction is a sum of a
collection of these values, there cannot be an accurate conversion. In particular, of the values
from .1 through to .9 only .5 converts accurately. This was mentioned in Chapter 1 (Section
1.02) in the discussion about storing currency values.

The method for conversion of a positive value is as follows:

Convert the whole-number part using the method described in Chapter 1 (Section 1.01).
Add the 0 sign bit.

Convert the fractional part using the method described in Worked Example 16.01.
Combine the two, with the exponent expressed as zero.

i B~ W N

Adjust the position of the binary point and change the exponent accordingly to achieve a
normalised form.

WORKED EXAMPLE 16.01

Converting a denary value to a floating-point representation

Example 1
Let’s consider the conversion of 8.75:

1 The 8 converts to 1000, adding the sign bit gives 01000.
2 The .75 can be recognised as being .11 in binary.

3 The combination gives 01000.11 which has exponent value zero.




Chapter 16: Data Representation

4 Shifting the binary point gives 0.100011 which has exponent value denary 4.

5 The next stage depends on the number of bits defined for the mantissa and the
exponent; if ten bits are allocated for the mantissa and four bits are allocated for the
exponent the final representation becomes 0100011000 for the mantissa and 0100 for
the exponent.

Example 2

Let’s consider the conversion of 8.63. The first step is the same but now the .63 has to be
converted by the ‘multiply by two and record whole number parts’ method. This works as
follows:

.63x2=1.26s0 lis stored to give the fraction .1
.26 x2=.5250 0 is stored to give the fraction .10
.52x2=1.04s0 1is stored to give the fraction .101
.04x2=.08s00is stored to give the fraction .1010

At this stage it can be seen that multiplying .08 by 2 successively is going to give a lot of
zeros in the binary fraction before another 1 is added so the process can be stopped.
What has happened is that .63 has been approximated as .625. So, following Steps 3-5 in
Example 1, the final representation becomes 0100010100 for the mantissa and 0100 for the
exponent.

TASK 16.01

Convert the denary value -7.75 to a floating-point binary representation with ten bits for the
mantissa and four bits for the exponent. Start by converting 7.75 to binary (make sure you add
the sign bit!). Then convert to two’s complement form. Finally, choose the correct value for
the exponent to leave the implied position of the binary point after the sign bit. Convert back
to denary to check the result.

Problems with using floating-point numbers
Asillustrated above, the conversion of a real value in denary to a binary representation

almost guarantees a degree of approximation. This is then added to by the restriction of the
number of bits used to store the mantissa.

Many uses of floating-point numbers are in extended mathematical procedures involving
repeated calculations. Examples of such use would be in weather forecasting using a
mathematical model of the atmosphere or in economic forecasting. In such programming
there is a slight approximation in recording the result of each calculation. These so-called
rounding errors can become significant if calculations are repeated enough times. The
only way of preventing this becoming a serious problem is to increase the precision of the
floating-point representation by using more bits for the mantissa. Programming languages
therefore offer options to work in ‘double precision’ or ‘quadruple precision’.

The other potential problem relates to the range of numbers that can be stored. Referring
back to the simple eight-bit representation illustrated in Table 16.03, the highest value
represented is denary 112. A calculation can easily produce a value higher than this. As
Chapter 5 (Section 5.02) illustrated, this produces an overflow error condition. However, for




Cambridge International AS and A level Computer Science

floating-point values there is also a possibility that if a very small number is divided by a
number greater than 1 the result is a value smaller than the smallest that can be stored. This
is an underflow error condition. Depending on the circumstances, it may be possible for a
program to continue running by converting this very small number to zero but clearly this
must involve risk.

Summary

Examples of non-composite user-defined data types include enumerated and pointer data types.
Record, set and class are examples of composite user-defined data types.

File organisation allows for serial, sequential or direct access.

Floating-point representation for a real number allows a wider range of values to be represented.

A normalised floating-point representation achieves optimum precision for the value stored.

Stored floating-point values rarely give an accurate representation of the denary equivalent.

Exam-style Questions

1 Aprogrammer may choose to use a user-defined data type when writing a program.

a  Givean example of a non-composite user-defined data type and explain why its use by a programmer is
different to the use of an in-built data type. [3]

b  Aprogramisto be written to handle data relating to the animals kept in a zoo. The programmer chooses to
use a record user-defined data type.

i  Explain what a record user-defined data type is. [2]
ii  Explain the advantage of using a record user-defined data type. [2]

iii Write pseudocode for the definition of a record type which is to be used to store: animal name, animal age,
number in zoo and location in the zoo. [5]

2 a Abinaryfileisto be used to store data for a program.
i  Whatare the terms used to describe the components of such a file. 2]

i Explain the difference between a binary file and a text file. (3]

b  Abinary file might be organised for serial, sequential or direct access.
i Explain the difference between the three types of file organisation. (4]
ii  Give an example of file use for which a serial file organisation would be suitable. Justify your choice. [3]

i Give an example of file use when direct access would be advantageous. Justify your choice. [3]




Chapter 16: Data Representation

3 Afile contains binary coding. The following are four successive bytes in the file:

10010101 | | 00110011 | 11001000 | | 00010001

a

The four bytes represent two numbers in floating-point representation. The first byte in each case represents
the mantissa. Each byte is stored in two’s complement representation.

i  Givethe name for what the second byte represents in each case.
ii State whether the representations are for two positive numbers or two negative numbers and explain why.
iii One of the numbers is in a normalised representation. State which one it is and give the reason why.

iv  State where the implied binary point is in a normalised representation and explain why a normalised
representation gives better precision for the value represented.

v If two bytes were still to be used but the number of bits for each component was going to be changed by
allocating more to the mantissa, what effect would this have on the numbers that could be represented?
Explain your answer.

Using the representation described in part (a), Show the representation of denary 12.43 as a floating-point
binary number.




	Scan261 (20 files merged).pdf (p.261-280)

