CS-150 Worksheet 2 Data Representation

This worksheet is about getting familiar with representation of different number types, including negative numbers, real numbers, and calculations on them. Show your working for all tasks.

\square Task 2.1 - Convert to Two's Complement binary

i. Convert the following decimal numbers to 8-bit Two's Complement binary:

- 34
- -50
ii. Convert the following numbers from 8 -bit Two's Complement binary to decimal:
- 10111011 • 00100101

Task 2.2 - Two's Complement binary arithmetic

i. Perform the following additions with 8-bit Two's Complement binary representation:

- $00010101+00101110$
- $10010110+00010111$
ii. Perform the following subtractions with 8 -bit Two's Complement binary representation:
- 00110111-00001101
- 01011010-11101111

\square Task 2.3 - Convert Real Numbers from base x to base y

i. Convert the following from decimal to binary

- 10.125
- 223.25
ii. Convert the following real numbers from binary to hexadecimal:
- 10010111100.0111
- 1100.0010101

Task 2.4 - The sign \times mantissa \times base ${ }^{\exp }$ scheme

i. Convert the following decimal real numbers, identifying sign, mantissa, base and exp, your representation should only use a mantissa of 5 digits, e.g. 3.141592 becomes Sign: +1 , Mantissa: 31415 , Base: 10, Exponent: -4 . Note: we drop the " 92 ", and rounding does not occur as we haven't defined as such in this representation scheme.

- 23.451
- 0.123141
ii. Convert each of the following to their real number form, in decimal.
- Sign: -1, Mantissa: 57231, Base: 10, Exponent: 5
- Sign: +1 , Mantissa: 13123, Base: 10, Exponent: -7

Task 2.5 - Scientific Notation

Convert the following decimal real numbers into Scientific Notation, however this time we can only store 5 significant digits. For example: 111029 would be 1.1103 E 5 . Note that Scientific Notation does define what happens with regards to rounding.

- 5240.82
- 249236.23
- 0.0014210

\square Task 2.6 - Keyword Encoding

i. Apply Keyword Encoding to the following nursery rhyme:

Three blind mice. Three blind mice. See how they run. See how they run. They all ran after the farmer's wife, Who cut off their tails with a carving knife, Did you ever see such a sight in your life, As three blind mice?
ii. Calculate the compression ratio of the new compressed message.

Task 2.7 - Run-Length Encoding

i. Apply Run-Length encoding to the following:

- AAAAAAAAAAaaaAAAABBCCCCDDDdAAAAaEEEEEE
- 1011101101110000000101011111101000001111001000001
ii. Calculate the compression ratio of the new compressed messages above.

\square Challenge Task

Construct a Huffman Tree and encode the following message:

- the cat in the hat sat on the mat

Calculate the compression ratio of the new compressed message above.

\square Challenge Task

Write a program, in either Java or Python, which takes in a decimal floating point number and converts it to a fixed length sign \times mantissa \times base ${ }^{\exp }$ representation. Print out the different components of this representation. i.e:

```
Prompts and inputs:
    Enter floating point decimal number: 3.14159265359
    Enter length of mantissa: 5
Outputs:
    Sign: Positive
    Mantissa: 31415
    Base: 10
    Exponent: -4
```

