CS-150 Worksheet 1 Number Systems

This lab is about getting familiar with base conversions and binary arithmetic. Complete each of the follow tasks, remembering to provide your working.

Task 1.1 - Decimal (base 10) to base x

i. Convert the following to binary:

- 12
$12 / 2=6 \mathrm{r} \mathbf{0}$
$6 / 2=3 \mathrm{r} 0$
$3 / 2=1 \mathrm{r} 1$
$1 / 2=0 \mathrm{r} 1$
$=1100$ in base 2
- 9002
$9002 / 2=4501 \mathrm{r} 0$
$4501 / 2=2250 \mathrm{r} 1$
$2250 / 2=1125 \mathrm{r} 0$
$1125 / 2=562 \mathrm{r} 1$
$562 / 2=281 \mathrm{r} 0$
$281 / 2=140 \mathrm{r} 1$
$140 / 2=70 \mathrm{r} 0$
$70 / 2=35 \mathrm{r} 0$
$35 / 2=17 \mathrm{r} 1$
$17 / 2=8 \mathrm{r} 1$
$8 / 2=4 \mathrm{r} \mathbf{0}$
$4 / 2=2 \mathrm{r} \mathbf{0}$
$2 / 2=1 \mathrm{r} \mathbf{0}$
$1 / 2=0 \mathrm{r} 1$
$=10001100101010$ in base 2
ii. Convert the following to octal:
- 341
$341 / 8=42 \mathrm{r} 5$
$42 / 8=5 \mathrm{r} 2$
$5 / 8=0 \mathrm{r} 5$
$=525$ in base 8
- 55
$55 / 8=6 \mathrm{r} 7$
$6 / 8=0 \mathrm{r} 6$
$=67$ in base 8
iii. Convert the following to hexadecimal:
- 150
$150 / 16=9 \mathrm{r} 6$
$9 / 16=0 \mathrm{r} 9$
$=96$ in base 16
- 2019

2019/16 = 126r3
$126 / 16=7 \mathrm{r} 14=7 \mathrm{r} \mathbf{E}$
$7 / 16=0 \mathrm{r} 7$
$=7 \mathrm{E} 3$ in base 16

Task 1.2 - Base x into decimal

i. Convert the following from binary:

- 1101110110
1×2^{9}
$+1 \times 2^{8}$
$+0 \times 2^{7}$
$+1 \times 2^{6}$
$+1 \times 2^{5}$
$+1 \times 2^{4}$
$+0 \times 2^{3}$
$+1 \times 2^{2}$
$+1 \times 2^{1}$
$+0 \times 2^{0}$
$=512+256+0+64+32+16+0+4+2+0=886$ in base 10
- 100101
1×2^{5}
$+0 \times 2^{4}$
$+0 \times 2^{3}$
$+1 \times 2^{2}$
$+0 \times 2^{1}$
$+1 \times 2^{0}$
$=32+0+0+4+0+1=37$ in base 10
ii. Convert the following from hexadecimal:
- AB23
$A \times 16^{3}$
$+B \times 16^{2}$
$+2 \times 16^{1}$
$+3 \times 16^{0}=40960+2816+32+3=43811$ in base 10
- 39 F
3×16^{2}
$+9 \times 16^{1}$
$+F \times 16^{0}$
$=768+144+15=927$ in base 10

Task 1.3 - Addition in binary

i. Calculate the following additions (no limit of word size):

- $101010+11010$

$$
101010
$$

$+11010$
1111 (carry in)
$=1000100$

- $11101101+1111011$

11101101
$+\quad 1111011$
11111111 (carry in)
$=101101000$

Challenge Task

Write a program, in either Java or Python, which implements the base conversion algorithm for integers via the repeated division method given in the lectures. Try extending this to allow for the conversion of a real number. You might want to make use of the division and modulo operators.

