

1. COUNT CELLS EQUAL TO 2
2. COUNT CELLS GREATER THAN 3
3. COUNT CELLS LESS THAN 4
4. COUNT CELLS THAT CONTAIN SPECIFIC TEXT 5
5. COUNT IF TWO CRITERIA MATCH 6
6. COUNT MATCHES BETWEEN TWO COLUMNS7
7. COUNT NUMBERS THAT BEGIN WITH 8
8. COUNT OCCURRENCES IN ENTIRE WORKBOOK 9
9. COUNT ROWS THAT CONTAIN SPECIFIC VALUES 10
10. COUNT UNIQUE DATES 11
11. COUNT UNIQUE NUMERIC VALUES IN A RANGE 12
12. COUNT UNIQUE TEXT VALUES IN A RANGE 13

1 COUNT CELLS EQUAL TO

FUNCTION 1

In this function, COUNTIF is counting the number of cells in the range C2: C13 that contain the text "red".

2 COUNT CELLS GREATER THAN

FUNCTION 1

In this function, COUNTIF is counting the number of cells in the range B2:B13 that are equal to the value in cell D5.

FUNCTION 2

In this function, COUNTIF is counting the number of cells in the range B2 : B13 that are equal to the value in cell D6.

FUNCTION 3

In this function, COUNTIF is counting the number of cells in the range B18:B29 that are greater than the value in cell D18.

FUNCTION 4

In this function, COUNTIF is counting the number of cells in the range B18:B29 that are greater than or equal to the value in cell D18.

3 COUNT CELLS LESS THAN

A	A	B	C	D	E	F	G	H
1	Name	Score		Count the number of cells with score less than 90				
2	Jim	79		Count the number ofcells with score less than or equal to 90				
3	Adrian	82						
4	Sandy	86		CRITERIA	RESU			
5	Ayako	91		<75	1	COUN	13,	
6	Sylvia	77		<=75	2	COUN	13,	
7	Miguel	81						
8	Yuri	90						
9	Kay	83						
10	Harry	75						
11	Jane	93						
12	Robert	70						
13	Emily	88						

FUNCTION 1

In this function, COUNTIF is counting the number of cells in the range $\mathbf{B 2}: \mathbf{B 1 3}$ that are equal to the criteria in cell D5.

FUNCTION 2

In this function, COUNTIF is counting the number of cells in the range B2:B13 that equal to the criteria in cell D6.

FUNCTION 3

In this function, COUNTIF is counting the number of cells in the range B18: $\mathbf{B 2 9}$ that are less than the value in cell D18.

FUNCTION 4
In this function, COUNTIF is counting the number of cells in the range $\mathbf{B 1 8 : B 2 9}$ that are less than or equal to the value in cell D18.

4 COUNT CELLS THAT CONTAIN SPECIFIC TEXT

FUNCTION 1

In this function, the range being counted is A2: A12.
The criterion is "*a*", which means that the function will count the number of cells in the range that contain the letter " 2 " anywhere within the cell.

FUNCTION 2

In this function, the range being counted is A2: A12
The criterion is "*2*", which means that the function will count the number of cells in the range that contain the number " 2 " anywhere within the cell.

FUNCTION 3

In this function, In this function, the range being counted is A2: A12.
The criterion is "*-s*", which means that the function will count the number of cells in the range that contain the string "-s" anywhere within the cell

FUNCTION 4

In this function, the range being counted is A2: A12.
The criterion is "*x*", which means that the function will count the number of cells in the range that contain the letter " x " anywhere within the cell.

5 COUNT IF TWO CRITERIA MATCH

FUNCTION 1

In this function, is counting cells in the range A2:A12 that contain the text "blue" and cells in the range $\mathbf{B 2}: \mathbf{B 1 2}$ that are greater than 15

FUNCTION 2

In this function, is counting cells in the range A2:A12 that contain the text "RED" and cells in the range $\mathbf{B 2}$: $\mathbf{B 1 2}$ that are greater than 15.

6 COUNT MATCHES BETWEEN TWO COLUMNS

FUNCTION 1

In this function, SUMPRODUCT is being used with the logical operator -- and the = operator, which tests for equality between elements in the range $\mathbf{A 2}: \mathbf{A 1 2}$ and the range $\mathbf{B 2 : B 1 2}$.

The -- operator before the parentheses converts the resulting array of TRUE and FALSE values to 1 s and 0 s , respectively.

FUNCTION 2

In this function, SUMPRODUCT is being used with the logical operator -- and the <> operator, which tests for inequality between elements in the range $\mathbf{A 2}: \mathbf{A 1 2}$ and the range $\mathbf{B 2 : B 1 2}$.

The -- operator before the parentheses converts the resulting array of TRUE and FALSE values to 1 s and 0 s , respectively.

7 COUNT NUMBERS THAT BEGIN WITH

4	A	B	C	D	E		F	G	H	I
1	Number									
2	250648		Count numbers that begin with the following codes:							
3	250876									
4	350345		CODE	RESULT	=SUMPRODUCT(--(LEFT(A2:A12,LEN(C5))=C5))					
5	450654		25	5						
6	250756		35	2						
7	450890		45	3						
8	250879		55	1						
9	450537									
10	250237		Numbers in column C are							
11	351645		entered as text values.							
12	551287									
13										
14	Numbers in column A									
15	are entered as text									
16										
17	The double negative (-) coerces the TRUE FALSE values to 1 s and 0 s, respectively.									

FUNCTION 1

The LEFT function extracts characters from the left side of the cells in the range A2:A12.
The LEN function returns the length of the string in cell C5.
The =C5 part of the function compares the result of the LEFT function to the value in cell C5. If the values are equal, the formula returns TRUE for that cell. If the values are not equal, the formula returns FALSE for that cell.

The -- operator in front of the array formula converts the array of TRUE and FALSE values returned by the formula to $\mathbf{1 s}$ and $\mathbf{0 s}$. TRUE values are converted to $\mathbf{1 s}$, and FALSE values are converted to $\mathbf{0 s}$.

The SUMPRODUCT function sums up the products of all the values in the array. If all of the values in the array are 1, the function will return the number of elements in the array. If any of the values are 0 , the function will return a value less than the number of elements in the array.

8 COUNT OCCURRENCES IN ENTIRE WORKBOOK

4	A		B	C	D	E	F	G
1	Search	Count occurrences of name 'Steven' in entire workbook.						
2	Steven							
3		Result						
4	Range							
5	A1:A6	Result						
6		=SUMPRODUCT(COUNTIF(INDIRECT("'" \& Sheets \& "'!" \& A5),A2))						
7								
8								
9	Sheets	Sheets is the named range A10:A12.						
10	Sheet1							
11	Sheet2							
12	Sheet3							

FUNCTION 1

The INDIRECT function is being used to build a reference to a range of cells on multiple sheets. The sheet names are stored in the Sheets range and the cell reference A5 is concatenated to the sheet names using the \& operator.

The resulting reference is passed as the range argument to the COUNTIF function, which counts the number of cells in the specified range that match the criterion in A2.

Finally, the SUMPRODUCT function takes the array of results returned by the COUNTIF function and adds up the products.

The overall effect of this formula is to count the number of cells in multiple sheets that match a criterion in cell A2 and then add up the counts.

9 COUNT ROWS THAT CONTAIN SPECIFIC VALUES

4	A	B	C	D	E	F	G	H	I	J	K								
1	19	23	19	X	Count the number of rows that														
2	21	15	18		contain the value 19.														
3	19	22	22	X															
4	17	15	23		Value	19													
5	16	22	24	X															
6	18	16	16		Result	5													
7	17	17	25																
8	16	19	19		$=S U M(--(M M U L T(--(A 1: C 12=F 4), T R A N S P O S E(C O L U M N(A 1: C 12) \wedge 0))>0))$														
9	24	21	18																
10	17	18	25																
11	19	22	25	x															
12	25	19	25	X															
13	Data is the named range A1:C12.																		
14																			
15																			
16 The double negative (--) coerces the TRUE																			

FUNCTION 1

- Check if the values in a range called "data" are equal to the value in cell F4.
- Count the number of times that this condition is true.

The SUM function is used to add up the results of the condition being checked.
The MMULT function is used to multiply two arrays of values. In this case, the -- operator is being used to convert the arrays of TRUE and FALSE values returned by the data=F4 condition into arrays of 1 s and 0 s . The TRANSPOSE function is used to transpose the array.

The COLUMN function is used to return an array of the column numbers for a given range. In this case, the $\wedge 0$ operator is used to raise each column number to the power of 0 , which has the effect of returning an array of 1 s with the same size as the data range.

Finally, the >0 operator is used to check if the result of the MMULT function is greater than $\mathbf{0}$. This returns an array of TRUE and FALSE values, which are then converted to $\mathbf{1 s}$ and $\mathbf{0 s}$ using the -- operator. The SUM function is then used to add up all of the 1 s in the array, giving the final result.

10 COUNT UNIQUE DATES

-	A	B	C	D	E	F	G	H
1	Date	Stock	Quantity	Action		Count total trades		
2	01/10/2022	AAPL	100	Buy				
3	01/10/2022	CONS	100	Buy		Total trades		
4	05/10/2022	INTC	100	Sell			=COUNT(date)	
5	05/10/2022	PFE	50	Sell				
6	05/10/2022	HLT	100	Sell				
7	07/10/2022	AMZN	25	Buy		Count unique		
8	07/10/2022	CAT	150	Sell				
9	09/10/2022	MMM	100	Sell		Trading days		
10	09/10/2022	IBM	50	Sell		5	COUNT(UNIQU	
11	12/10/2022	MSFT	200	Buy				
12	12/10/2022	HD	50	Buy				
13	12/10/2022	GILD	100	Sell				

FUNCTION 1

This function is using the range called "date" as the input. The function will count the number of cells in the range $\mathbf{A 2}$: A13 that contain a number, and return the result as a numerical value.

If the range contains any cells with text or other non-numeric values, those cells will be ignored. Only cells that contain numbers, including dates formatted as numbers, will be counted.

FUNCTION 2

This function is using the UNIQUE function as an input. The UNIQUE function takes a range range called "date" as input and returns a list of unique values in that range.

The COUNT function then counts the number of cells in the list returned by the UNIQUE function and returns the result as a numerical value.

11 COUNT UNIQUE NUMERIC VALUES IN A RANGE

4	A	B	C	D	E
1	EMPL ID	HOURS		Count uniqe Empl ID values.	
2	905	2			
3	905	4		Unique count w/FREQUENCY	4
4	905	5		=SUM(--(FREQUENCY(A2:A11,A2:A11)>	
5	905	2			
6	773	4			
7	773	8			
8	801	5			
9	963	8			
10	963	9			
11	963	6			
12					
13	The double negative (--) coerces the TRUE FALSE values to 1s and 0s, respectively.				

FUNCTION 1

The SUM function adds up all of the values in a range of cells. In this case, the range of cells being summed is produced by the FREQUENCY function.

The FREQUENCY function takes two arguments: an array of data, and an array of bins. The function returns an array that represents the frequency distribution of the data, with each element in the output array corresponding to the number of occurrences of the data within the corresponding bin.

The -- operator in front of the FREQUENCY function converts the output of the function from an array to a series of values.

The >0 part of the formula filters the series of values, so that only the non-zero values are included in the final sum.

So, the overall formula returns the sum of the number of occurrences of all unique values in the range A2:A11.

12 COUNT UNIQUE TEXT VALUES IN A RANGE

4	A	B	C	D	E		
1	NAME	HOURS		Count uniqe Name values.			
2	Jim	2					
3	Jim	4					
4	Jim	5		```=SUMPRODUCT(-- (FREQUENCY(MATCH(A2:A11,A2:A11,0),RO W(A2:A11)-ROW(B5)+1)>0))```			
5	Sue	2					
6	Sue	4					
7	Mark	8					
8	Mark	5					
9	Mark	8					
10	Tony	9					
11	Tony	6					
12	The double negative (--) coerces the TRUE FALSE values to 1 s and 0 s , respectively						
13							

FUNCTION 1

The SUMPRODUCT function returns the sum of the products of corresponding entries in one or more arrays. The -- operator is used to convert the results of the FREQUENCY function, which are arrays of logical values, to arrays of $\mathbf{1 s}$ and 0 s . The FREQUENCY function returns a frequency distribution, which is a summary of how often each value occurs in a range. It takes two arguments: an array of data and an array of bins.

The MATCH function is used to find the position of a value in an array. It takes three arguments: the value you want to find, the range to search, and the type of match you want. In this case, the value you want to find is A2, the range to search is A2:A11, and the type of match you want is 0 , which specifies an exact match.

The ROW function returns the row number of a reference. It takes one argument, which can be a cell reference or a range of cells. In this case, $\operatorname{ROW}(\mathbf{A 2}: \mathrm{A} 11)$ returns an array of row numbers for the cells in the range $\mathbf{A 2}: \mathbf{A 1 1}$, and $\operatorname{ROW}(\mathbf{B 5})$ returns the row number of cell $\mathbf{B 5}$.

The +1 at the end of the ROW function increases the row numbers by 1. This is necessary because the FREQUENCY function expects the bins array to start at $\mathbf{1}$, not 0 .

The final part of the formula, >0, checks if the value is greater than 0 . If it is, the result is TRUE, which is converted to 1 by the -- operator. If it is not, the result is FALSE, which is converted to $\mathbf{0}$ by the -- operator.

So, to summarize, this formula returns the sum of the number of occurrences of each value in the range A2: A11.

