Chapter 3 Student Book Answers

What you should already know

- 1 Memory an immediate access store is RAM and ROM which are directly accessed by the CPU. Storage – an external devices such as HDD, SSD which are not directly accessed by the CPU.
- 2
- Internal memory is RAM and ROM.
- RAM stores instructions, data and the part of the OS currently in use.
- Data in RAM is lost if the power is turned off.
- RAM is a very fast memory but relatively small and expensive per byte.
- ROM stores data which can't be lost or deleted but cannot be changed.
- External storage is much larger than RAM/ROM but is not volatile and less expensive per byte than RAM/ROM.
- 3 i) DVD/CD player
 - ii) RAM/ROM
 - iii) SSD
 - iv) HDD
- 4 Online storage connected to and under the control of a computer.

Offline - storage not connected to and under the control of the computer.

5 Data access time – the time taken to locate and read data on a storage or memory device. Data transfer rate – the time taken to transfer data from storage or memory to CPU or other device.

Activity 3A

1 a) i) RAM

- temporary memory (contents can be changed)
- can be written to/read from
- used to store data, files, instructions, part of OS currently in use
- volatile memory (contents lost when power turned off).

ROM

- non-volatile memory (memory contents retained even when power is lost)
- permanent memory (contents cannot be changed)
- contents can only be read
- used to store start up data (e.g. BIOS).

(ii) DRAM

- needs to be constantly refreshed
- less expensive to manufacture than SRAM
- consumes less power than SRAM
- higher storage capacity than SRAM
- main memory is constructed from DRAM.

SRAM

- no need to constantly refresh since it uses flip-flop circuits
- has a faster data access time than DRAM
- processor memory cache uses SRAM.

b) Magnetic

- uses magnetic properties to store data
- uses disk surfaces (coated in magnetic material)
- disks rotate and data is read/written using a read/write head which floats above the disk surface.

Optical

- uses disks which are coated in light-sensitive material
- data is read/written by red or blue laser light as disk rotates
- no contact made with disk surface during read/write operation
- DVD uses dual layering to increase data storage capacity.

Solid state

- no moving parts
- uses NAND/NOR chips to store data
- relies on flow of electrons to control read/write operations
- can't overwrite data; data needs to be deleted first and new data is written in the same location
- uses a matrix with two transistors at each intersection
- one transistor is floating gate
- one transistor is control gate.

2 a) Inkjet printer

- uses ink droplets which are ejected onto paper by piezoelectric or heat
- paper advances line by line during printing as head moves across the page
- ink is in liquid form and contained in cartridges.

Laser printer

- uses static electricity to print characters/images
- ink is in the form of a dry powder (known as toner)
- uses an electrostatically charged drum where paper is charged and areas for printing have opposite charge
- ink is charged and only sticks to areas of paper with opposite charge
- print is fixed to paper by passing paper over a heated drum.
- b) i) Laser colour leaflets which need to be produced quickly in their 100s. Inkjet – one-off high-quality photographs.
 - Laser large capacity paper trays and high speed, high quality printing; ink cartridges last much longer than inkjet before needing to be changed.
 Inkjet for one-off job, printing is just as quick as laser; better quality printing when printing images.

3

- preserves the valuable art works
- allows many people to see the paintings since 3D replica can be produced as required
- allows full investigation of a painting without any risk of damaging the original (e.g. close view of brush strokes, amount of paint used on each part of canvass; allows the possibility of authenticating a new painting).

4

- the light sensor sends data to the ADC interface
- this changes the data into digital and sends it to the microprocessor
- the microprocessor samples the data every minute (or at some other frequency rate)
- if the data from the sensor < value stored in memory ...
- ... a signal is sent from the microprocessor to the street lamp
- ... and the lamp is switched on
- the lamp stays switched for 30 minutes before the sensor readings are sampled again (this prevents the lamp flickering off and on during brief heavy cloud cover for example)
- if the data from the sensor >= value stored in memory ...
- ... a signal is sent from the microprocessor to the street lamp
- ... and the lamp is switched off
- the lamp stays switched off for 30 minutes before sensor readings are sampled again (this prevents the lamp flickering off and on during heavy cloud cover for example).

Activity 3B

Α	В	Χ
0	0	1
0	1	0
1	0	0
1	1	1

b)				
	Α	B	С	X
	0	0	0	1
	0	0	1	1
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

c)

Α	В	Χ
0	0	0
0	1	0
1	0	0
1	1	0

d)

Α	В	С	X
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

e)

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Activity 3C

c) (K = 1 OR L = 1) OR (K = 1 AND M = NOT 1) OR (M = 1)

K	L	Μ	Т
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Activity 3D

a) X = 1 if (R = NOT 1) OR (C = 1 AND T = NOT 1) OR (R = 1 AND T = NOT 1)

R	Т	С	Χ
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

b) (G = 1 AND W = NOT 1) OR (G = NOT 1 AND R = 1) OR (W = 1 AND R = 1)

G	R	W	S
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Activity 3E

1

А	В	С
0	0	0
0	1	0
1	0	0
1	1	1

Α	B	С
0	0	0
0	1	1
1	0	1
1	1	1

B
1
0

2 a)

Α	В	С	X
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

3

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	0

Same as a NOR gate

Activity 3F

1 a)

b) the truth table will only generate a 0 when all inputs are 1

3

Α	В	С	Х
0	0	0	1
0	1	1	1
0	0	0	1
0	1	1	1
1	0	0	1
1	1	1	1
1	0	0	1
1	1	1	0

Extension Activity 3A

- a) RAM store user settings, for example, time ROM – store factory settings, for example, microwave frequencies
- **b)** RAM stores user settings, for example, temperature ROM store cooling logic, sensor readings, and so on
- c) RAM store directions sent from remote or programmed flight pattern ROM – store factory setting such as radio frequencies

Extension Activity 3E

- 1 a) completes circuit between top and bottom conductive layer
 - **b)** use of keyboard buffers and interrupts
- **2** a) i) movement of wheels allows mouse to know its x-y position
 - ii) red light used to allow x-y direction/position to be monitored
 - **b)** USB is direct serial wired data connection with computer wireless uses Bluetooth to communicate with computer

Extension Activity 3G

Α	В	A.B	Ā.B	$A.\overline{B} + \overline{A}.B$	A + B	A.B	$(A + B).\overline{A.B}$
0	0	0	0	0	0	1	0
0	1	0	1	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	0	1	0	0

Extension Activity 3H

NOR gate

End of chapter questions

- 1 a) OLED technology
 - OLED screens are thinner and lighter and therefore more flexible.
 - They have a brighter output than equivalent LED/LCD screens.
 - OLED requires no backlighting.
 - They use less power than equivalent LED/LCD screens (very important on portable devices).
 - Screens can be moulded into any shape required.
 - The colours are more vivid/better contrast.

b)

- human eye has limited detection of different colour hues
- depends whether or not tv is set up properly
- over time screen output deteriorates
- unnecessary to have such a range of colours
- questionable advantage
- (many other reasons to consider)

2 a) i)

- can't be changed by users
- software loaded up automatically on powering up
- always available

ii)

- because many changes are made during the development stage
- EPROM can be altered as required
- ROM chip can't be changed once written to
- expensive to replace ROM chip each time a change/update is made

iii)

- fast access for working memory
- values can be written to RAM, for example, current score

iv)

- possibility of saving to a memory stick
- possibility of linking to larger screens
- possibility of connecting to devices such as printers

b)

- less expensive to build prototypes
- other methods require new mould to be made every time design is changed

3 a) Control

- Sensor data is used by the microprocessor or computer to decide if any action needs to be taken to keep a process within correct parameters.
- The output from the system affects next set of inputs.

Monitoring

- Sensor data is used by the microprocessor or computer to check whether it is within stored/set parameters.
- If data is outside set parameters, a warning is sent to the user (on screen warning or sound).
- The microprocessor/computer has no effect on what is being monitored/it simply 'watches' the process.

- Sensor 1 measures temperature and sensor 2 measures humidity level.
- Sensor 1 data is continuously sent to the microprocessor via the ADC (if analogue in nature); this converts data to digital format.
- If temperature < temperature setting, then a signal is sent out from the microprocessor to the air con unit to increase heat output.
- If temperature > temperature setting, then a signal is sent out from the microprocessor to the air con unit to increase output of cooling air.
- If the two values are the same, no signals are sent by the microprocessor.
- Sensor 2 data is continuously sent to the microprocessor via ADC (if analogue in nature); this converts data to digital format.
- If humidity > set level, a signal is sent out from the microprocessor to the air con unit to activate the dehumidifier.
- If humidity < set level, a signal is sent out from the microprocessor to the air con unit to increase moisture level in the air being output.
- If the two values are the same, no signals are sent by the microprocessor.

```
4 order: A - 4, B - 6, C - 1, D - 9, E - 2, F - 7, G - 3, H - 8, I - 5
```


b) RAM

- loses contents when powered off/volatile
- temporary memory (contents can be erased or changed)
- stores files/part of OS/data/instructions currently in use
- data can be read from/written to
- often have larger capacity than ROM.

ROM

- doesn't lose contents on powering off/non-volatile
- contents cannot be altered/permanent memory
- read only memory
- can be used to store, for example, BIOS, bootstrap.

c DVD

- laser/optical media
- phase changing recording
- rotating disk and single spiral track (centre to outer rim)
- uses dual layering
- uses red laser (DVD) or blue laser (Blu-Ray DVD).

Flash memory

- NAND-based solid state memory
- no moving parts
- uses matrix with two transistors at each intersection
- one transistor is a floating gate
- second transistor is a control gate
- uses movement of electrons to control R/W operations
- can't overwrite data with new data; need to erase existing data and then write new data in the same location.

b)

6

Α	В	С	X	
0	0	0	1	
0	0	1	1	
0	1	0	1]
0	1	1	0]
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	Ĩ

 $(\overline{A} \cdot B + (\overline{B} + C)) \cdot \overline{C}$