# **Chapter 2 Student Book Answers**

# What you should already know

# 1 a) i) MAC address

- A unique number that identifies a device connected to the internet.
- It can be a physical or virtual address.
- A MAC address is usually fixed.

#### **IP** address

- When a device connects to the internet it is given an IP address.
- An IP address is usually unique for a particular session.
- It's format is xx.xx.xx.xx.

b)

- A MAC address identifies a device (usually NIC contains the address).
- An IP address is the location of the device on the internet.
- A MAC address and IP address operate on different layers of the internet protocol.
- A MAC address identifies machines on layer 2.
- An IP address are used on layer 3.
- Even if a computer has an IP address it still needs a MAC address to find other devices which may be on same network.

c)

- An ISP is a company that provides services to access and use the internet.
- The company will charge a fee for the service provided.
- An ISP has equipment and telecommunication lines to allow internet connection.
- An ISP provides user with an IP address when connecting to the internet.

d)

- An internet (web) browser is software application for accessing information on the World Wide Web
- An internet browser allows user to view pages on different websites.
- They allow location of websites by typing in the URL in the address bar.

### 2 Advantages

- NIC/WNIC cards
- network cabling to connect up computers and devices
- switches/hubs to connect devices to form a network

## **Disadvantages**

- router required if internet/external networks need to be accessed
- firewall if any external links exist
- servers to manage security, store common software/files, manage printer queues
- setting up privileges to allow access to user areas
- web browser and ISP if internet connection needed

3 a)

- They will require software to enable WiFi if accessing internet via wireless router.
- Most devices will need a cell net provider (3G, 4G, 5G) and web browser.

### b) Advantages

- very small therefore very likely to be carrying it all the time
- can also make calls or access internet on the move
- can be used anywhere since they don't need to be near a router.

## **Disadvantages**

- small screens can make reading web pages more difficult and more difficult to navigate
- small/virtual keyboards can make typing slower and more error prone
- web browsers (etc.) can drain the battery quickly
- small memory size (most don't allow memory expansion)
- not all webpage features are compatible with smartphone OS
- data transfer rates can be relatively slow.

# **Activity 2A**

## 1 Client-server network

- Works well with a small group of workers doing research.
- It is possible to control network resources with good network security (essential when doing research).
- It is also important that data needs to be backed up on a central server so that all researchers have access to the latest developments and data.

# 2 Peer-to-peer network

- Group of consultants is probably small but it all depends on how secure the data needs to be.
- If it is essential that it needs to be very secure, then they may need to consider client-server networks instead

(Note: as long as the chosen network can be **fully justified**, there is often more than one possible answer to the question).

# **Activity 2B**

## 1 a) LAN:

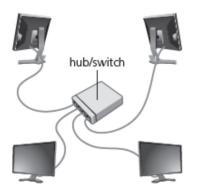
- Are networks that cover small geographical areas, for example, a building.
- A typical LAN will consist of a number of computers and devices connected by hubs/switches.

#### WAN:

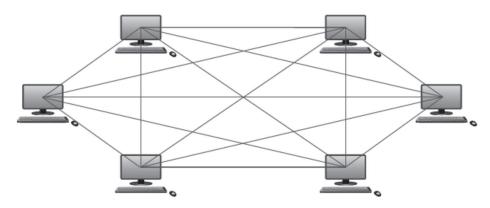
- Is a network which covers very large geographical area (e.g. whole country or continents).
- Wans are formed from connecting number of LANs together by routers/gateways.
- Due to vast distances, they use public communication links (such as telephone lines and/or satellites).

#### MAN:

- Is a network that covers smaller geographical area than a WAN.
- They often connect devices in a number of buildings within a city (e.g. a university campus).


## b) Benefits:

• sharing of resources such as printers


- software licence for all the computers on a network is usually cheaper than licences for the same number of stand-alone computers
- ability to share files leads to more consistent/reliable data since all data accessed from a central server
- use of a network manager to ensure security and access rights and also to control external links to, for example, the internet.
- c) i) Thick client a computer that doesn't rely on processing being done by a server or other computer; can operate online or offline.
  - ii) Thin client a device needing access to the network for it to work e.g. a POS terminal at a supermarket; depends on a more powerful computer to do the processing.
- **2** a) i) bus



(ii) star



## iii) mesh



#### b) Bus

## **Advantages**

- easier to expand network
- requires less cabling.

# **Disadvantages**

- failure of main cable results in failure of whole network
- not very good under heavy load.

#### Star

## **Advantages**

- easier to upgrade
- if one node or link fails, then the rest of the network can still function.

#### Mesh

## **Advantages**

- easier to detect network faults
- has very good privacy and security

# Disadvantages

- if the central hub/switch fails, then the whole network will be down
- high cost of cabling.

#### **Disadvantages**

- requires bulk cabling
- a) Public cloud a storage environment where the customer/client and cloud storage provider are different companies.

Private cloud – a storage provided by a dedicated environment behind a company firewall, the customer/client and cloud storage provider are integrated and operate as a single entity.

## b) Benefits:

- Customer/client files stored on the cloud can be accessed any time, from any device, anywhere in the world provided there is internet access.
- There is no need for the customer/client to carry external storage devices around with them or even use the same computer where the original files were stored.
- Cloud storage provides user with remote and automatic back-up of data.
- It offers almost unlimited storage capacity (at a cost).

#### c) Drawbacks:

- There are well-known security aspects to consider.
- If the internet is unstable/fails or the broadband connection is slow it may be difficult/impossible to access files from the cloud storage facilities.
- Costs can be high if a large amount of cloud storage is required.
- There may be limited data transfer rates.
- Potential for failure of the cloud storage company with unknown results.

4

| Wireless networking                                                                                                                                                                               | Wired networking                                                                                                                                                                                                                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| • It is easier to expand the networks and it isn't necessary to connect the devices using cables.                                                                                                 | <ul> <li>Using cables produces a more reliable and<br/>stable network; wireless connectivity is<br/>often subjected to interference.</li> </ul>                                                                                            |  |
| <ul> <li>This gives devices increased mobility<br/>provided they are within range of the<br/>WAPs.</li> </ul>                                                                                     | • Data transfer rates tend to be faster and there won't be any 'dead spots'.                                                                                                                                                               |  |
| There is an increased chance of interference from external sources.                                                                                                                               | <ul> <li>Setting up cabled networks tends to be<br/>cheaper overall in spite of the need to buy<br/>and install cable.</li> </ul>                                                                                                          |  |
| • Data is less secure than with wired systems; it is easier to intercept radio waves and microwaves than cables; it is essential to protect data transmissions using encryption (e.g. WEP, WPA2). | However, cabled networks lose the ability<br>for devices to be mobile; they must be close<br>enough to allow for cable connections.                                                                                                        |  |
| <ul> <li>Data transmission rate is still slower than<br/>for cabled networks although it continues<br/>to improve.</li> </ul>                                                                     | <ul> <li>Having lots of wires can lead to a number of<br/>hazards such as tripping hazards,<br/>overheating of connections (leading to<br/>potential fire risk) and disconnection of<br/>cables during routine office cleaning.</li> </ul> |  |
| Signals can be stopped by walls and there may be drop off points.                                                                                                                                 | Many devices (for example, smartphones) are only set up for WiFi/Bluetooth connectivity.                                                                                                                                                   |  |
| • There may be legislation regarding which signal frequencies may be used.                                                                                                                        | There may be building restrictions preventing the laying of cables, etc.                                                                                                                                                                   |  |

(Note: a reasoned argument needs to be made based on which of the features of wired and wireless networks from the above table were chosen by the candidate)

### 5 a) Bit streaming

- a contiguous sequence of digital bits sent over a network/internet
- requires high speed data transfer communications link
- requires buffering
- bits arrive at destination in the same order as they were sent.

b)

- Buffers are needed since the rate that data is transmitted to the computer may be different to the data transfer rate to the media player.
- Buffers prevent movies 'freezing' if, for example, the broadband speed is slow.

### c) On demand

- digital files stored on a server in bit streaming format
- link to encoded video is placed on the website server
- user clicks on link to start the download of the video as required
- video can be paused/fast forwarded/rewound.

## Real time (live)

- live event captured on camera/microphone and sent to a computer
- video/sound signal is encoded to a bit streaming media format
- encoded data is uploaded from computer to dedicated video streaming server
- because data is live, not possible to pause/fast forward/rewind.

# **Activity 2C**

## 1 a)

- standard telephone line used
- line always open until receivers replaced on handset
- line remains active even during a power cut
- uses circuit switching (which allows line to remain open)
- data (voice) transmitted in analogue (old system using copper cables) or digital (using newer optical fibre networks)
- data can transmit in both directions at the same time.

b)

- internet connection only live whilst data is being sent/received (talking)
- uses Voice over Internet Protocol (VoIP) which converts sound/video to digital packages (encoding) before sending over the internet
- VoIP uses packet switching (data is broken down into packets and then routed to the destination by the fastest route and then reassembled in the correct order at the destination)
- data undergoes file compression to reduce the amount of data being sent.

#### c) GEO

- Geostationary Earth Orbit
- provides long distance telephone and computer network communications
- 35 800 km above the Earth with orbital period of 24 hours.

#### **MEO**

- Medium Earth Orbit
- used by GPS networks
- 5000 to 12 000 km above the earth with orbital period between 2 to 8 hours.

#### **LEO**

- Low Earth Orbit
- used by mobile phone network operators
- 500 to 1500 km above the Earth with orbital period between 12 mins and 1 hour.
- a) A: 00000000 00000000 00000000 00000000
   B: 10000000 00000000 00000000 00000000
   C: 11000000 00000000 00000000 00000000
   b) A (upper): 127.255.255.255
   01111111 11111111 111111111

B (upper): 191.255.255.255
10111111 11111111 111111111 111111111
C (upper): 223.255.255.255

11011111 11111111 11111111 11111111

- c) i) 190.15.25.240 class B network
  - ii) 190.15 net ID 25.240 – host ID
  - iii) This means net ID can be set at maximum 18 bits leaving 14 bits for host ID.

d)

- IPv6 uses 128 bits rather than 32 bits
- IPv6 uses hexadecimal digits
- IPv6 uses built in authentication
- IPv6 ensures no more private address collisions
- IPv6 means there is no more need for NATs
- **3** a) A private IP address is reserved for internal use behind a router or other NAT device.

A public IP address is allocated by the ISP to identify where the device is on the network – this IP address is accessible to anyone logged onto the internet.

b) protocol is https

domain is exampleofaurl.co.de

filename is computer logic.html

c)

- browser opened and user types in url: www.exampleofaurl.co.de/computer logic.html
- browser asks DNS for IP address
- if DNS server can't find URL in its database or cache it sends out request to another DNS server
- second DNS server finds URL and can map it to an IP address
- this IP address is sent back to first DNS server which now puts IP address and URL into its database/cache; this IP address is now sent back to the user's computer
- computer's web browser now sets up communication with the website and starts to download the pages
- web browser interprets HTML and displays pages on user's monitor.

#### 4 a) Internet

- a massive network of networks which are made up of computers and other devices
- stands for INTERconnected NETwork
- makes use of TCP/IP protocols.

#### www

- world wide web
- collection of multimedia web pages
- stored on websites
- http(s) protocols written using HTML
- URL specifies location of web pages
- documents accessed by web browsers
- information is accessed over the network.
- b) Yes, it is correct.
  - WANs are made up of connected LANs using the public network.
  - The LANs may be private networks only accessible through passwords and user ids ...

• ... therefore may not be accessible from the internet since this uses common access points which are open to all users.

## c) i) Web browser

- a software application for accessing information on www
- allows user to view pages on different websites
- allow location of websites by typing in the URL in the address bar.

## (ii) ISP

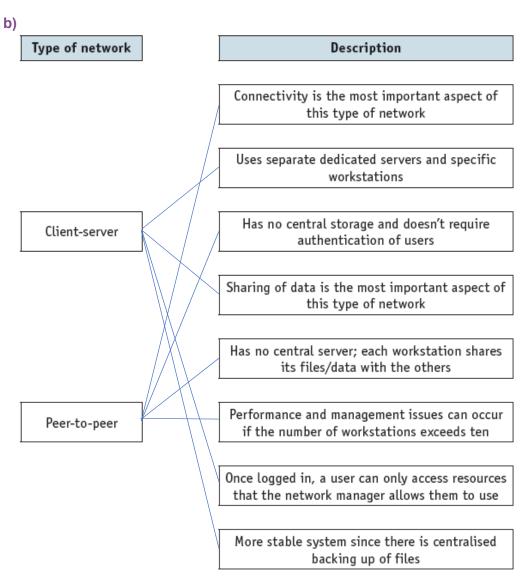
- a company that provides services to access and use the internet
- company will charge a fee for the service provided
- has equipment and telecommunication lines to allow internet connection
- provides user with an IP address when connecting to the internet.

# **End of chapter questions**

## 1 a) i) Benefits

- signal only goes to destination node therefore more secure
- easier to expand network
- centralised management means it can be monitored
- failure of one node doesn't affect whole network.

#### **Drawbacks**


- if central hub/switch fails, the whole network fails
- the overall performance is dependent on the central hub/switch.

#### ii) Benefits

- easier to detect faults
- uses routing logic so data reaches destination node only by the shortest route or rerouted if one of the nodes fails
- has very good privacy and security

# Drawbacks

- complex network topology
- requires considerable amount of cabling which means initial set up is relatively expensive



### 2 a) i)

- Copper cable uses pulses of electricity to transmit data ...
- ... whereas fibre optic cables uses pulses of light to transmit data.

ii)

- Copper cabling is much cheaper ...
- ... and is a well-known technology if anything goes wrong.
- Fibre optic cables are the cable of choice when sending data over long distances ...
- ... this is because they offer the best data transfer rate and have a very high resistance to external interference.
- The main drawback is the high cost ...
- ... but they do offer the smallest signal attenuation.
- They have ~26 000 times the transmission capacity of twisted pair cables.
- single mode fibre optic cables use a single mode light source and have a smaller central core which results in less light reflection along the cable ...
- ... the benefit of this is that the data can travel faster and further than with multi core cables.
- Multi core cables allow for a multi-mode light source; the construction causes higher light reflections in the core.

# **b)** GEO – Geostationary Earth Orbit:

These provide long distance telephone and computer network communications; orbital period is 24 hours and they orbit at 35 800 km.

#### MEO – Medium Earth Orbit

These are used for GPS systems (about 10 MEO satellites are currently orbiting the Earth); orbital period is 2 to 8 hours; they orbit at 5000 to 12 000 km.

#### LEO – Low Earth Orbit

These are used by the mobile phone networks (there are currently more than 100 LEO satellites orbiting the Earth); orbital period is 12 mins to 1 hour; they orbit at 500 to 1500 km.

- c) i) Attenuation is the reduction in amplitude of a signal. For example, we see that infrared is worst in this respect since it can be affected by rain and can also be stopped by internal walls.
  - ii) When a device wants to communicate, it picks one of 79 channels at random. If the chosen channel is already in use, it randomly chooses another channel

#### 3 a) Bit streaming

- is a contiguous sequence of digital bits sent over a network/internet
- requires a high speed data transfer communications link
- requires buffering
- bits arrive at destination in the same order as they were sent.

## b) i) Benefits

- no need to store large files on a local computer
- no need to wait for whole files to be loaded before watching video
- allows on demand playback
- no specialist software needed.

# ii) Potential problems

- video stops/hangs if internet connection is slow or is lost
- video stops/hangs if there is inadequate buffering
- may require special software to run certain files
- usual risk of viruses and other malware being transmitted.

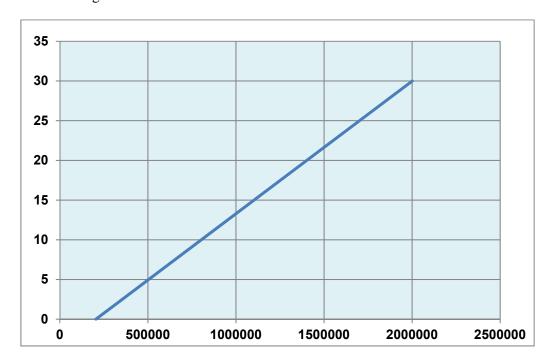
## c) On demand

- digital files stored on a server in bit streaming format
- link to encoded video is placed on the website server
- user clicks on link to start the download of the video as required
- video can be paused/fast forwarded/rewound.

## Real time (live)

- live event captured on camera/microphone and sent to a computer
- video/sound signal is encoded to a bit streaming media format
- encoded data is uploaded from computer to dedicated video streaming server
- because data is live, not possible to pause/fast forward/rewind.

#### 4 a)


- Buffers are needed since the rate that data is transmitted to the computer may be different to the data transfer rate to the media player.
- Buffers prevent movies 'freezing', for example, if the broadband speed is slow.

b) i) low buffer value =  $200 \text{ kiB} = 200 \times 1024 = 204\,800$  bits high buffer value =  $1.8 \text{ MiB} = 1.8 \times 1\,048\,576 = 1\,887\,437$  bits during first 2 seconds, incoming data =  $(1.5 \times 1\,048\,576)/8 = 196\,608$  bits and outgoing data is =  $(600 \times 1024)/8 = 76\,800$  bits therefore, data build up is  $(196\,608 - 76\,800) = 119\,808$  bits therefore, low buffer mark is now  $(204\,800 + 119\,808) = 324\,608$  bits

ii) The buffer builds up as follows:

after 4 seconds: 444 416 bits after 6 seconds: 564 224 bits after 8 seconds: 684 032 bits after 10 seconds: 803 840 bits

and produces a graph which shows high buffer value reached after about 30 seconds of bit streaming:



c)

- A larger buffer is needed (e.g. 20 MiB).
- The rate at which data is sent to the media player must increase.
- 5 a) i) Data collision is when two messages along same data channel sent at same time could collide.
  - ii) CSMA/CD relies on fact that frames being sent cause voltage level changes.

iii)

- When a collision is detected, the station stops transmitting the frame and transmits a jam signal.
- It then waits for a random time period before resending data frame.

| b) |                |   |                                                                                                                                                |
|----|----------------|---|------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Network device | ] | Description                                                                                                                                    |
|    |                |   |                                                                                                                                                |
|    | gateway        |   | device that analyses packets of data transmitted<br>from one network to another or analyses data<br>within a single network                    |
|    |                |   |                                                                                                                                                |
|    | switch         |   | network point (node) that connects two networks<br>that use different protocols                                                                |
|    |                |   |                                                                                                                                                |
|    | hub            |   | device that connects LANs that use<br>the same protocol to allow them to work as a<br>single network                                           |
| _  |                |   |                                                                                                                                                |
|    | router         |   | device on a network that redirects data received<br>to only those destinations on the LAN network<br>that match the address in the data packet |
|    |                |   |                                                                                                                                                |
|    | bridge         |   | device that sends all the received data packets to<br>every device in the network irrespective of any<br>data packet addresses                 |