

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 1

DANIEL-TONY HOUSARD

Chapter 19: Computational thinking and problem solving

19.1 Algorithms

Keyterms:
• Binary search

a method of searching an ordered list by testing the value of the middle item in the

list and rejecting the half of the list that does not contain the required value.

• Insertion sort

a method of sorting data in an array into alphabetical or numerical order by

placing each item in turn in the correct position in the sorted list.

• Binary tree

a hierarchical data structure in which each parent node can have a maximum of

two child nodes.

• Graph

a non-linear data structure consisting of nodes and edges.

• Dictionary

an abstract data type that consists of pairs, a key and a value, in which the key is

used to find the value.

• Big O notation

a mathematical notation used to describe the performance or complexity of an

algorithm.

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 2

DANIEL-TONY HOUSARD

19.1.1 Understanding Linear and Binary searching methods

Linear Search

• This method works for a list in which the items can be stored in any order.

• But as the size of the list increases, the average time taken to retrieve an item

increases correspondingly.

Identifier Description

myList Array to be searched

upperBound Upper bound of the array

lowerBound Lower bound of the array

index Pointer to current array element

item Item to be found

found Flag to show when item has been found

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 3

DANIEL-TONY HOUSARD

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 4

DANIEL-TONY HOUSARD

Binary Search

• A binary search is more efficient if a list is already sorted.

• The value of the middle item in the list is first tested to see if it matches the required

item, and the half of the list that does not contain the required item is discarded.

• Then, the next item of the list to be tested is the middle item of the half of the list

that was kept.

• This is repeated until the required item is found or there is nothing left to test.

For example, consider a list of the letters of the alphabet.

To find the letter W using a linear search there would be 23 comparisons.

To find the letter W using a binary search there could be just 3 comparisons.

Identifier Description

myList Array to be searched

upperBound Upper bound of the array

lowerBound Lower bound of the array

index Pointer to current array element

item Item to be found

found Flag to show when item has been found

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 5

DANIEL-TONY HOUSARD

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 6

DANIEL-TONY HOUSARD

ACTIVITY 19C

In your chosen programming language, write a short program to complete the binary

search.

Use this sample data:

16, 19, 21, 27, 36, 42, 55, 67, 76, 89

Search for the values 19 and 77 to test your program.

'VB program for Binary Search

Module Module1

Public Sub Main()

Dim index, lowerBound, upperBound As Integer

Dim item As Integer

Dim found As Boolean

'create array to store all the numbers

Dim myList() As Integer = New Integer() {16, 19, 21, 27, 36, 42, 55, 67, 76, 89}

'enter item to search for

Console.Write("Please enter item to be found ")

item = Integer.Parse(Console.ReadLine())

found = False

lowerBound = 0

upperBound = myList.Length - 1

Do

index = (upperBound + lowerBound) / 2

If (item = myList(index)) Then

found = True

End If

If item > myList(index) Then

lowerBound = index + 1

End If

If item < myList(index) Then

upperBound = index - 1

End If

Loop Until (found) Or (lowerBound > upperBound)

If (found) Then

Console.WriteLine("Item found")

Else : Console.WriteLine("Item not found")

End If

Console.ReadKey()

End Sub

End Module

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 7

DANIEL-TONY HOUSARD

19.1.2 Understanding Insertion and Bubble sorting methods

Bubble Sort

• Sorts data in an array into alphabetical or numerical order by comparing adjacent

items

and swapping them if they are in the wrong order.

• The bubble sort works well for short lists and partially sorted lists.

Identifier Description

myList Array to be searched

upperBound Upper bound of the array

lowerBound Lower bound of the array

index Pointer to current array element

swap Flag to show when swaps have been made

top Index of last element to compare

temp Temporary storage location during swap

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 8

DANIEL-TONY HOUSARD

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 9

DANIEL-TONY HOUSARD

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 10

DANIEL-TONY HOUSARD

Insertion Sort

• An insertion sort will also work well for short lists and partially sorted lists.

• It sorts data in a list into alphabetical or numerical order by placing each item in

turn in the correct position in a sorted list.

• It works well for incremental sorting, where elements are added to a list one at a

time over an extended period while keeping the list sorted.

Identifier Description

myList Array to be searched

upperBound Upper bound of the array

lowerBound Lower bound of the array

index Pointer to current array element

key Element being placed

place Position in array of element being moved

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 11

DANIEL-TONY HOUSARD

• The element shaded blue is being checked and placed in the correct position.

• The elements shaded yellow are the other elements that also need to be moved if

the element being checked is out of position.

• When sorting the same array, myList, the insert sort made 21 swaps and the bubble

sort shown in Chapter 10 made 38 swaps.

• The insertion sort performs better

on partially sorted lists because,

when each element is found to

be in the wrong order in the list,

it is moved to approximately the

right place in the list.

• The bubble sort will only swap

the element in the wrong order

with its neighbour.

• As the number of elements in a

list increases, the time taken to

sort the list increases.

• It has been shown that, as the

number of elements increases, the performance of the bubble sort deteriorates

faster than the insertion sort.

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 12

DANIEL-TONY HOUSARD

ACTIVITY 19D

• In your chosen programming language write a short program to complete the

insertion sort.

• Use this sample data: 4, 46, 43, 27, 57, 41, 45, 21, 14

'VB program for insertion sort

Module Module1

Sub Main()

Dim myList() As Integer = New Integer() {4, 46, 43, 27, 57, 41, 45, 21, 14}

Dim index, lowerBound, upperBound, place, myKey, temp As Integer

upperBound = myList.Length - 1

lowerBound = 0

For index = lowerBound + 1 To upperBound

myKey = myList(index)

place = index – 1

If myList(place) > myKey Then

Do While (place >= lowerBound) And myList(place) >

myKey

temp = myList(place + 1)

myList(place + 1) = myList(place)

myList(place) = temp

place = place - 1

Loop

myList(place + 1) = myKey

End If

Next

'output the sorted array

For index = 0 To myList.Length - 1

Console.Write(myList(index) & " ")

Next

Console.ReadKey() 'wait for keypress

End Sub

End Module

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 13

DANIEL-TONY HOUSARD

19.1.3 Understanding and using Abstract Data Types (ADTs)

• ADTs is a collection of data and a set of operations on that data.

• There are several operations tha are essential when using an ADT:

o finding an item already stored

o adding a new item

o deleting an item

• Stack

o A list containing several items operating on the last in, first out (LIFO) principle.

o Items can be added to the stack (push) and removed from the stack (pop).

o The first item added to a stack is the last item to be removed from the stack.

• Queue

o A list containing several items operating on the first in, first out (FIFO) principle.

o Items can be added to the queue (enqueue) and removed from the queue

(dequeue).

o The first item added to a queue is the first item to be removed from the queue.

• Linked list

o A list containing several items in which each item in the list points to the next

item in the list.

o In a linked list a new item is always added to the start of the list.

• Stacks, queues and linked lists all make use of pointers to manage their

operations.

• Items stored in stacks and queues are always added at the end.

• Linked lists make use of an ordering algorithm for the items, often ascending or

descending.

Stack

• A stack uses two pointers:

o a base pointer points to the first item in the stack

o a top pointer points to the last item in the stack.

• When they are equal there is only one item in the stack.

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 14

DANIEL-TONY HOUSARD

Queue

• A queue uses two pointers:

o a front pointer points to the first item in the queue

o a rear pointer points to the last item in the queue.

• When they are equal there is only one item in the queue.

Linked List

• A linked list uses a start pointer that points to the first item in the linked list.

• Every item in a linked list is stored together with a pointer to the next item.

• This is called a node.

• The last item in a linked list has a null pointer.

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 15

DANIEL-TONY HOUSARD

Stack Operations

• The value of the basePointer always remains the same during stack operations:

• A stack can be implemented using an array and a set of pointers.

• As an array has a finite size, the stack may become full and this condition must be

allowed for.

To set up a stack

To push an item, stored in item, onto a stack

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 16

DANIEL-TONY HOUSARD

To pop an item, stored in item, from the stack

Stack Data Structure

Stack pop operation

Stack push operation

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 17

DANIEL-TONY HOUSARD

ACTIVITY 19E

• In your chosen programming language, write a program using subroutines to implement a

stack with 10 elements.

• Test your program

o by pushing two integers 7 and 32 onto the stack,

o popping these integers off the stack,

o then trying to remove a third integer,

o and by pushing the integers 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 onto the stack,

o then trying to push 11 on to the stack.

'VB program for stack

Module Module1

 Public stack() As Integer = {Nothing, Nothing, Nothing, Nothing,

 Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}

Public basePointer As Integer = 0

Public topPointer As Integer = -1

Public Const stackFull As Integer = 10

Public item As Integer

Sub Main()

push(7)

push(32)

pop()

Console.WriteLine(item)

pop()

Console.WriteLine(item)

pop()

push(1)

push(2)

push(3)

push(4)

push(5)

push(6)

push(7)

push(8)

push(9)

push(10)

push(11)

Console.ReadKey() 'wait for keypress

End Sub

 Sub pop()

 If topPointer = basePointer - 1 Then

 Console.WriteLine("Stack is empty, cannot pop")

 Else

 item = Stack(topPointer)

 topPointer = topPointer - 1

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 18

DANIEL-TONY HOUSARD

 End If

 End Sub

 Sub push(ByVal item)

 If topPointer < stackFull - 1 Then

 topPointer = topPointer + 1

 Stack(topPointer) = item

 Else

 Console.WriteLine("Stack is full, cannot push")

 End If

 End Sub

End Module

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 19

DANIEL-TONY HOUSARD

Queue Operations

• The value of the frontPointer changes after dequeue but the value of the rearPointer

changes after enqueue:

• A queue can be implemented using an array and a set of pointers.

• As an array has a finite size, the queue may become full and this condition must be allowed

for.

• Also, as items are removed from the front and added to the end of a queue, the position of

the queue in the array changes.

• Therefore, the queue should be managed as a circular queue to avoid moving the position

of the items in the array every time an item is removed.

• When a queue is implemented using an array with a finite number of elements, it is managed

as a circular queue.

• Both pointers, frontPointer and rearPointer, are updated to point to the first element in the array

(lower bound) after an operation where that pointer was originally pointing to the last element

of the array (upper bound), providing the length of the queue does not exceed the size of the

array.

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 20

DANIEL-TONY HOUSARD

To set up a queue

To add an item, stored in item, onto a queue

To remove an item from the queue and store in item

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 21

DANIEL-TONY HOUSARD

Queue data structure

Queue enqueue (add item to queue) operation

Queue dequeue (remove item from queue) operation

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 22

DANIEL-TONY HOUSARD

ACTIVITY 19F

• In your chosen programming language, write a program using subroutines to implement a

queue with 10 elements.

• Test your program

o by adding two integers 7 and 32 to the queue,

o removing these integers from the queue,

o then trying to remove a third integer,

o and by adding the integers 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 to the queue then trying to add

11 to the queue.

'VB program for queue

Module Module1

Public Dim frontPointer As Integer = 0

Public Dim rearPointer As Integer = -1

Public Const queueFull As Integer = 10

Public Dim queueLength As Integer = 0

Public Dim item As Integer

Public Dim queue() As Integer = {Nothing, Nothing, Nothing, Nothing, Nothing, Nothing,

 Nothing, Nothing, Nothing, Nothing, Nothing}

 Public Sub Main()

Console.ReadKey()

enQueue(7)

enQueue(32)

deQueue()

Console.WriteLine(item)

deQueue()

Console.WriteLine(item)

deQueue()

Console.ReadKey()

enQueue(1)

enQueue(2)

enQueue(3)

enQueue(4)

enQueue(5)

enQueue(6)

enQueue(7)

enQueue(8)

enQueue(9)

enQueue(10)

enQueue(11)

Console.ReadKey()

 End Sub

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 23

DANIEL-TONY HOUSARD

 Sub enQueue(ByVal item)

 If queueLength < queueFull Then

If rearPointer < queue.length - 1 Then

 rearPointer = rearPointer + 1

Else

 rearPointer = 0

End If

queueLength = queueLength + 1

queue(rearPointer) = item

 Else

 Console.WriteLine("Queue is full, cannot enqueue")

 End if

 End Sub

 Sub deQueue()

 If queueLength = 0 Then

 Console.WriteLine("Queue is empty, cannot dequeue")

 Else

 item = queue(frontPointer)

 If frontPointer = queue.length - 1 Then

 frontPointer = 0

 Else

 frontPointer = frontPointer + 1

 End if

 queueLength = queueLength - 1

 End If

 End Sub

End Module

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 24

DANIEL-TONY HOUSARD

Linked List Operations

• A linked list can be implemented using two 1D arrays, one for the items in the linked list and

another for the pointers to the next item in the list, and a set of pointers.

• As an array has a finite size, the linked list may become full and this condition must be allowed

for. Also, as items can be removed from any position in the linked list, the empty positions in

the array must be managed as an empty linked list, usually called the heap.

• The following diagrams demonstrate the operations of linked lists.

• The startPointer = –1, as the list has no elements. The heap is set up as a linked list ready for use.

• The startPointer is set to the element pointed to by the heapPointer where 37 is inserted.

• The heapPointer is set to point to the next element in the heap by using the value stored in the

element with the same index in the pointer list.

• Since this is also the last element in the list the node pointer for it is reset to –1.

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 25

DANIEL-TONY HOUSARD

• The startPointer is changed to the heapPointer and 45 is stored in the element indexed by the

heapPointer. The node pointer for this element is set to the old startPointer.

• The node pointer for the heapPointer is reset to point to the next element in the heap by using

the value stored in the element with the same index in the pointer list.

• The process is repeated when 12 is added to the list.

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 26

DANIEL-TONY HOUSARD

To set up a linked list

Identifier Description

myLinkedList Linked list to be searched

myLinkedListPointers Pointers for linked list

startPointer Start of the linked list

heapStartPointer Start of the heap

index Pointer to current element in the linked list

• The table below shows an empty linked list and its corresponding pointers.

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 27

DANIEL-TONY HOUSARD

Finding an item in a linked list

• The algorithm to find if an item is in the linked list myLinkedList and return the pointer to the

item if found or a null pointer if not found, could be written as a function in pseudocode as

shown below:

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 28

DANIEL-TONY HOUSARD

• The following programs use a function to search for an item in a populated linked list:

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 29

DANIEL-TONY HOUSARD

Inserting items into a linked list

Identifier Description

startPointer Start of the linked list

heapStartPointer Start of the heap

nullPointer Null pointer set to -1

itemAdd Item to add to the list

tempPointer Temporary pointer

• Below shows the populated linked list and its corresponding pointers again:

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 30

DANIEL-TONY HOUSARD

• The linked list, myLinkedList, will now be as shown below:

• The following procedure adds an item to a linked list:

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 31

DANIEL-TONY HOUSARD

Deleting items from a linked list

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 32

DANIEL-TONY HOUSARD

Identifier Description

startPointer Start of the linked list

heapStartPointer Start of the heap

nullPointer Null pointer set to −1

index Pointer to current list element

oldIndex Pointer to previous list element

itemDelete Item to delete from the list

tempPointer Temporary pointer

• The trace table below shows the algorithm being used to delete 36 from myLinkedList.

• The linked list, myLinkedList, will now be as follows.

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 33

DANIEL-TONY HOUSARD

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 34

DANIEL-TONY HOUSARD

ACTIVITY 19G

• In the programming language of your choice, use the code given to write a program to set

up the populated linked list and find an item stored in it.

ACTIVITY 19H

• Use the algorithm to add 25 to myLinkedList. Show this in a trace table and show myLinkedList

once 25 has been added. Add the insert procedure to your program, add code to input an

item, add this item to the linked list then print out the list and the pointers before and after the

item was added.

ACTIVITY 19I

• Use the algorithm to remove 16 from myLinkedList. Show this in a trace table and show

myLinkedList once 16 has been removed. Add the delete procedure to your program, add

code to input an item, delete this item to the linked list, then print out the list and the pointers

before and after the item was deleted

'VB program for a linked list

Module Module1
Public Dim As Integer heapStartPointer = 5
Public Dim As Integer startPointer= 4
Public Const As Integer nullPointer = -1
Public Dim item As Integer
Public Dim index As Integer
Public Dim itemPointer As Integer
Public Dim result As Integer
Public Dim myLinkedList() As Integer = {27, 19, 36, 42, 16, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing,
 Nothing}

Public Dim myLinkedListPointers() As Integer = {-1, 0, 1, 2, 3, 6, 7, 8, 9, 10, 11, -1}

Public Sub Main()

'enter item to delete
Console.Write("Please enter item to remove from list ")
item = Integer.Parse(Console.ReadLine())
delete(item)
For index = 0 To myLinkedList.Length - 1

Console.Write(myLinkedList(index) & " ")
Next
Console.WriteLine()

For index = 0 To myLinkedListPointers.Length - 1

Console.Write(myLinkedListPointers(index) & " ")
Next
Console.WriteLine()

'enter item to insert
Console.Write("Please enter item to add to list ")
item = Integer.Parse(Console.ReadLine())
insert(item)

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 35

DANIEL-TONY HOUSARD

For index = 0 To myLinkedList.Length - 1
Console.Write(myLinkedList(index) & " ")

Next

For index = 0 To myLinkedListPointers.Length - 1

Console.Write(myLinkedListPointers(index) & " ")
Next

'enter item to search for
Console.Write("Please enter item to be found ")
item = Integer.Parse(Console.ReadLine())
result = find(item)

If result <> -1 Then

Console.WriteLine("Item found")
Else

Console.WriteLine("Item not found")
End If
Console.ReadKey()

End Sub

Sub insert (ByVal itemAdd)

Dim tempPointer As Integer
If heapStartPointer = nullPointer Then

Console.WriteLine("Linked List full")
Else

tempPointer = startPointer
startPointer = heapStartPointer
myLinkedList(startPointer) = itemAdd
myLinkedListPointers(startPointer) = tempPointer

End if
End Sub

Sub delete (ByVal itemDelete)

Dim tempPointer, index, oldIndex As Integer

If startPointer = nullPointer Then
Console.WriteLine("Linked List empty")

Else
index = startPointer
While myLinkedList(index) <> itemDelete And index <> nullPointer

Console.WriteLine(myLinkedList(index) & " " & index)
Console.ReadKey()
oldIndex = index
index = myLinkedListPointers(index)

End While

If index = nullPointer Then

Console.WriteLine("Item " & itemDelete & " not found")
Else

myLinkedList(index) = nothing
tempPointer = myLinkedListPointers(index)
myLinkedListPointers(index) = heapStartPointer
heapStartPointer = index

Copyright © 2016 - All Rights Reserved - ONLINE Computer Training Center 36

DANIEL-TONY HOUSARD

myLinkedListPointers(oldIndex) = tempPointer
End if

End If
End Sub

Function find (ByVal itemSearch As Integer) As Integer

Dim Found = False As Boolean
itemPointer = startPointer
While (itemPointer <> nullPointer) And Not found

If itemSearch = myLinkedList(itemPointer) Then
found = True

Else
itemPointer = myLinkedListPointers(itemPointer)

End if
End While
Return itemPointer

End Function

End Module

