
Chapter 15 Student Book Answers

15.1 What you should already know

(3) (a) (i) Bus width

- word size used by the computer
- size of memory location which can be directly addressed/accessed

- ii) smallest width = control bus
- iii) Address bus upgrade
 - larger word size can be used
 - more addresses can be accessed directly.
- b) i) Clock
 - clock speed defines clock cycle that the computer system uses to synchronise all operations
 - increasing clock speed can increase processing speed of computer.
 - ii) Interrupts
 - interrupt is a signal sent to CPU by a device/program,/user which requires CPUs attention according to priority level
 - interrupts can be caused by
 - i/o processing (e.g. disk drive is ready)
 - hardware fault (e.g. paper jam in printer)
 - program error (e.g. division by zero would produce software error)
 - user interaction (e.g. user presses the <BREAK> key on keyboard.

Activity 15A

1 a)

- RISC processor architecture has fewer built-in instructions which can actually lead to higher computer performance.
- RISC design strategy is built on simple instructions which is achieved by breaking up complex instructions into simpler sub-operations where each instruction requires one clock cycle.

b) CISC features:

- many instruction formats are possible
- there are more addressing modes
- makes use of multi-cycle instructions
- instructions can be of a variable length
- longer execution time for instructions
- decoding of instructions is more complex
- it is more difficult to make pipelining work
- the design emphasis is on the hardware
- uses the memory unit to allow complex instructions to be carried out.

RISC features:

- uses fewer instruction formats/sets
- uses fewer addressing modes
- makes use of single-cycle instructions
- instructions are of a fixed length
- faster execution time for instructions
- makes use of general multi-purpose registers
- easier to make pipelining function correctly
- the design emphasis is on the software
- processor chips require fewer transistors.
- **2** a) Von Neumann bottleneck:
 - shared bus between program memory and data memory leads to the bottleneck ...

- ... so, throughput limitation due to inadequate data transfer rates between memory and CPU ...
- ... this causes CPU to wait and remain idle for a period of time while low speed memory is being accessed.
- **b)** This slows down the performance of a computer system.
- 3 a) In a cluster, each machine is independent of the other computers in terms of memory and backup store; the computers are interconnected in some variation of a network.

In massively parallel processing there is really only one machine with many thousands of CPUs/processors interconnected.

b) There are many applications in scientific and medical research (reader should pick one example form a huge list).

 $4 \quad A = LOAD A$

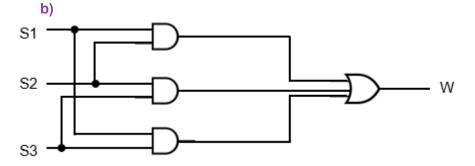
- B = LOAD B
- C = LOAD C

D = ADD A,B,C

E = STORE D

F = OUT D

Clock cycles


		1	2	3	4	5	6	7	8	9	10
Processor stages	IF	Α	В	С	D	E	F				
	ID		Α	В	С	D	E	F			
	OF			Α	В	С	D	E	F		
	IE				Α	В	С	D	E	F	
	WB					Α	В	С	D	E	F

15.2 What you should already know

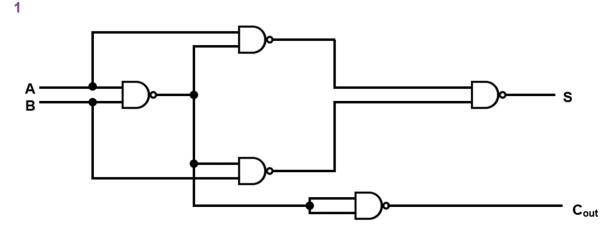
1			
Α	В	С	X
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

2			
Р	Q	R	Х
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

((P.Q) + (Q + R)).R becomes "INPUT R" after circuit simplification

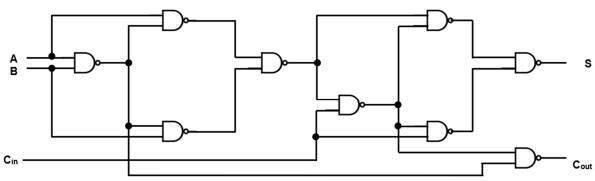
c)			
<u>\$1</u>	S2	S3	W
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Activity 15B


- a) $A.\overline{B} + A.\overline{C} + A.D + B.\overline{C}.D$ 1
 - **b**) Let X = original expression; thus \overline{X} (from a Karnaugh map) gives: \overline{A} . \overline{B} . \overline{C} . D Using de Morgan's Law then gives: $\overline{A} + B + \overline{C} + D$

```
C)
          \overline{A}. B. C + A. B. \overline{C} + A. B. C + \overline{A}. B. \overline{C}
          \Rightarrow B. C. (\overline{A} + A) + B. \overline{C}. (\overline{A} + A)
          \Rightarrow B. C. 1 + B. \overline{C}. 1
          \Rightarrow B. (C + \overline{C}) \Rightarrow B. 1
          \Rightarrow B
d)
          \overline{A}. (A + B) + (B + A. A). (A + \overline{B})
          \Rightarrow \overline{A}.A + \overline{A}.B + (B + A).A + (B + A).\overline{B}
          \Rightarrow \overline{A}.B + (B + A).A + (B + A).\overline{B}
          \Rightarrow \overline{A}.B + B.A + A.A + B.\overline{B} + A.\overline{B}
          \Rightarrow \overline{A} \cdot B + B \cdot A + A + A \cdot \overline{B}
          \Rightarrow \overline{A}.B + A.B + A.1 + A.\overline{B}
          \Rightarrow \overline{A} \cdot B + A \cdot (B + 1 + \overline{B})
          \Rightarrow \overline{A}.B + A \Rightarrow A + \overline{A}.B \Rightarrow (A + \overline{A}).(A + B)
          \Rightarrow A + B
```

e)


```
(A + C). (A. D + A. \overline{D}) + A. C + C
\Rightarrow (A + C). A. (D + \overline{D}) + A. C + C
\Rightarrow (A + C). A. A. C + C
\Rightarrow A. ((A + C) + C) + C
\Rightarrow A. (A + C) + C \Rightarrow A. A + A. C + C \Rightarrow A + (A + 1). C
\Rightarrow A + C
```

Activity 15C

Inj	out	Out	tput
Α	В	S	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

2

	Input		Out	tput
Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

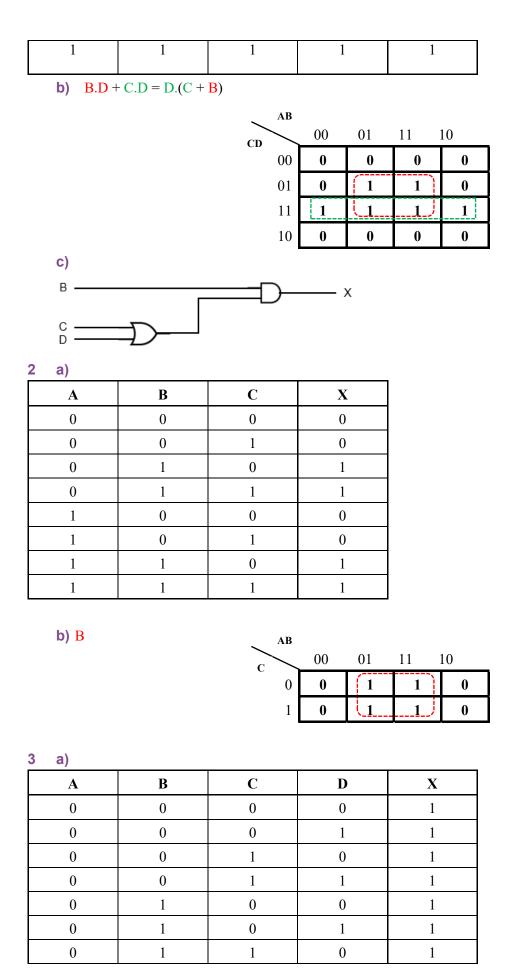
Activity 15D

1


Α	В	Х
0	0	1
0	1	1
1	0	1
1	1	0

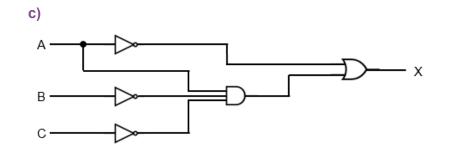
Simplified circuit is a NAND gate:

$$= \bigcirc - \qquad (\overline{A.B})$$

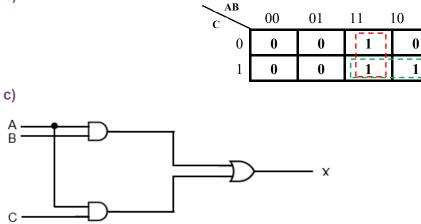

2			
Α	В	X	Y
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Simplified circuit:

Activity 15E


1 a)				
Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0

0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0


b) A. \overline{B} . $\overline{C} + \overline{A}$

CD	B 00	01	11	10
00	1	1	0	1
01	1	1	0	1
11	1	1	0	0
10	1	1	0	0

End of chapter questions

- **1 a)** A. B. C + A. \overline{B} . C + A. B. \overline{C}
 - **b)** A.B + A.C

2 a) i) ii) $A + B.D + \overline{B}.C$

~	AB				
CD		00	01	11	10
CD	00	0	0	1	1
	01	0	1	1	1
	11	1	1	1	1
	10	1/	0	1	12

b) i)

```
(A + C). (A. D + A. \overline{D}) + A. C + C

\Rightarrow (A. C). A. (D + \overline{D}) + A. C + C

\Rightarrow (A + C). A + A. C + C

\Rightarrow A. ((A + C) + C) + C

\Rightarrow A. (A + C) + C

\Rightarrow A. A + A. C + C

\Rightarrow A + (A + 1). C

\Rightarrow A + C
```

ii)

```
\begin{split} \overline{A}. & (A + B) + (B + A. A). (A + \overline{B}) \\ \Rightarrow \overline{A}. A + \overline{A}. B + (B + A). A + (B + A). \overline{B} \\ \Rightarrow \overline{A}. B + (B + A). A + (B + A). \overline{B} \\ \Rightarrow \overline{A}. B + B. A + A. A + B. \overline{B} + A. \overline{B} \\ \Rightarrow \overline{A}. B + B. A + A + A. \overline{B} \\ \Rightarrow \overline{A}. B + B. A + A + A. \overline{B} \\ \Rightarrow \overline{A}. B + A(B + 1 + \overline{B}) \\ \Rightarrow \overline{A}. B + A \\ \Rightarrow (A + \overline{A}). (A + B) \\ \Rightarrow A + B \end{split}
```

3 a) i)

INPUTS		OUTPUTS		
S	R	Q	Q	comment
1	0	1	0	
0	0	1	0	following $S = 1$ change
0	1	0	1	
0	0	0	1	following R = 1 change
1	1	0	0	

- ii) S = 1, R = 1, Q = 0, Q = 0 this is an invalid case since Q should be the complement (opposite) of Q
- b) i) two input values, J and K, and synchronisation (clock pulse) input
 - ii) uses a toggle which removes the invalid S, R states when using SR flip-flop
 - iii) Uses
 - Several JK flip-flops can be used to produce SHIFT REGISTERS in a computer.

Cambridge International AS & A Level Computer Science © Helen Williams and David Watson 2020

• A simple binary counter can be made from linking up several JK flip-flop circuits (this requires the toggle function).

4 a) SISD (single instruction single data)

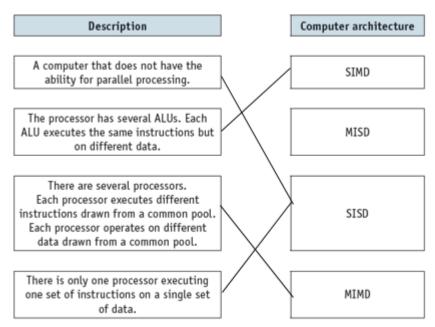
- uses a single processor that can handle a single instruction which uses one data source at a time
- each task is processed in sequential order.

SIMD (single instruction multiple data)

- uses several processors which execute the same instruction set but use different data inputs
- all processes do same calculations but on different data sets simultaneously.

MISD (multiple instruction single data)

- uses several processors
- each processor uses different instructions but uses same shared data.


MIMD (multiple instruction multiple data)

- uses several processors
- each processor can accept its own instructions independently
- each processor uses data from a separate data stream (e.g. single memory which has been partitioned).
- b) Features of parallel processing:
 - It is a much faster way to handle large volumes of independent data.
 - The data used sometimes relies on the result of a previous operation, therefore such data cannot be handled in parallel.
 - Data sets require the same processing for it to work.
 - It overcomes the von Neumann bottleneck and therefore greatly improves CPU performance.
 - Parallel processing requires more expensive hardware.

c)

- Eight instructions need 12 clock cycles when using pipelining.
- Without pipelining, it would require $8 \times 5 = 40$ clock cycles to complete (each of the 8 instructions requires 5 processing stages: IF, ID, OF, IF and WB).

5 a)

- **b** i) Massive many processors linked together.
 - ii) Parallel to perform a set of coordinated computations simultaneously.
- c) Hardware processors need to be able to communicate so that processed data can be transferred from one processor to another.

Software – suitable software which allows data to be processed by multiple processors simultaneously.

6 a) $S = (\overline{P} + \overline{(Q+R)}).R$

b)

D)			
Р	Q	R	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

c i) ii)

R PQ	00	01	11	10
0	0	0	0	0
1	1	1	0	0

iii)
$$S = \overline{P}.R$$

d)

$$S = (\overline{P} + \overline{(Q + R)}). R$$

$$\Rightarrow S = (\overline{P}. (\overline{Q}. \overline{R})). R$$

$$\Rightarrow S = (\overline{P}. R) + (\overline{Q}. \overline{R}. R)$$

$$\Rightarrow S = \overline{P}. R + \overline{Q}. 0$$

$$\Rightarrow S = \overline{P}. R + 0$$

$$\Rightarrow S = \overline{P}. R$$