9 Algorithm design and problem solving

In this chapter, you will learn about
» computational thinking skills (abstraction and decomposition)

» how to write algorithms that provide solutions to problems using structured English,
flowcharts and pseudocode

* the process of stepwise refinement.

In order to design a computer system that performs a specific task, or solves a given problem, the
task or problem has to be rigorously defined and set out, showing what is going to be computed
and how it is going to be computed.

This chapter introduces tools and techniques that can be used to design a software solution to
work with associated computer hardware to form a computer system.

Practice is essential to develop skills in computational thinking. Designs shown with pseudocode
or flowcharts can be traced to check if the proposed solution works, but the best way to actually
test that a computer system works is to code it and use it or, even better, get somebody else to
use it. Therefore, practical programming activities, alongside other activities, will be suggested at
every stage to help reinforce the skills being learnt and develop the skill of programming.

The programming languages to use are:
 Java

* Python

* VB.NET.

WHAT YOU SHOULD ALREADY KNOW

Can you answer these six questions and complete the following activity?
1 What is a procedure?

2 What is a function?

3 What is an algorithm?

4 What is structured English?

5 What is a flowchart?

6 What is pseudocode?

Write an algorithm using a flowchart to find the average of a number of integers. Both the
number of values and each integer are to be input, and the average is to be output.

Use the flowchart of your algorithm to write the algorithm in pseudocode.

Use your pseudocode to write and test a program that includes a function to solve the problem.

& 9.1 Computational thinking skills

Key terms

Abstraction — the process of extracting information that is essential, while ignoring what is not
relevant, for the provision of a solution.

Decomposition — the process of breaking a complex problem into smaller parts.

Pattern recognition — the identification of parts of a problem that are similar and could use the
same solution.

Computational thinking is used to study a problem and formulate an effective solution that can
be provided using a computer. There are several techniques used in computational thinking,
including abstraction, decomposition, algorithms and pattern recognition.

9.1.1 Using abstraction

Abstraction is an essential part of computational thinking. It enables computer scientists to
develop clear models for the solution to complex problems. Abstraction involves extracting
information that is essential while ignoring what is not relevant for the provision of a solution,
only including what is necessary to solve that problem.

Abstraction encourages the development of simplified models that are suited to a specific
purpose by eliminating any unnecessary characteristics from that model. Many everyday items
use abstraction, such as maps, calendars and timetables.

Maps use abstraction to show what is required for a specific purpose, for example, a road map
should only show the necessary detail required to drive from one place to another. The road map
in Figure 9.1 has reduced the complexity by only showing the essential details needed, such as
roads, road numbers and towns, and removing other information about the terrain that would not
be helpful (as shown in the satellite view).

The benefits of eliminating any unnecessary characteristics from the model include

* the time required to develop the program is reduced so the program can be delivered to the
customer more quickly

* the program is smaller in size so takes up less space in memory and download times are
shortened

* customer satisfaction is greater as their requirements are met without any extraneous features.

Loughbancugh [T
e

Cuom
=ttazr
Syl [i-c0] m
m
Thesmasios Jakham,
ool [R |
Leicester m Linstch Mbb' = (e emen
Pl ? p it
Wigston L rESE e=]
e 5 i u
2. -]
7, - wekoe T Bmtion
o m o "
= g o
S sk

Desbosouah

Map Data © 2018 Google, Imagery ©® 2018 Landsat/Copernicus
Figure 9.1 Road map and satellite view

The first stage of abstraction is to identify the purpose of the model of the situation that is to be
built. The situation could be one that occurs in real life, an imaginary one, or a future event such
as modeling the route of a deep space probe.

Once the purpose has been identified, sources of information need to be identified. These can
include observations, views of potential users, and evidence from other existing models.

The next stage is to use the information gathered from appropriate sources to identify what
details need to be included in the model, how these details should be presented and what details
are extraneous and need to be removed from the model.

For example, maps are used for many different purposes and can take different forms depending

on the identified use. The purpose of the road map model in Figure 9.1 is to allow a driver to
plan a journey, therefore, it includes towns and roads with their numbers. The roads depicted are
a scaled down version of the actual road to help the driver visualise the route.

A rail map model has another purpose and, therefore, looks very different, only showing rail
lines, stations and perhaps details about accessibility for wheelchair users at different stations. A
train passenger has no need to visualise the route, so the rail lines are simplified for clarity.

9.1.2 Using decomposition

Decomposition is also an essential part of computational thinking. It enables computer scientists
to break a complex problem into smaller parts that can be further subdivided into even smaller
parts until each part is easy to examine and understand, and a solution can be developed for it.
When a rigorous decomposition is undertaken, many simple problems are found to be more
complex than at first sight.

Pattern recognition is used to identify those parts that are similar and could use the same
solution. This leads to the development of reusable program code in the form of subroutines,
procedures and functions. When writing a computer program, each final part is defined as a
separate program module that can be written and tested as a separate procedure or function, as
shown in Figure 9.2. Program modules already written and tested can also be identified and
reused, thus saving development time. See Chapter 12 for further details.

Decomposition

Program

Module 1 Module 2

Meodule 1.1 Module 1.2 Module 2.1 Module 2.2

Module 2.2.1 Module 2.2.2

Figure 9.2 Decomposition of a program into modules

@€ 9.2 Algorithms

Key terms

Structured English — a method of showing the logical steps in an algorithm, using an agreed
subset of straightforward English words for commands and mathematical operations.

Flowchart — a diagrammatic representation of an algorithm.
Algorithm — an ordered set of steps to be followed in the completion of a task.

Pseudocode — a method of showing the detailed logical steps in an algorithm, using keywords,
identifiers with meaningful names, and mathematical operators.

Stepwise refinement — the practice of subdividing each part of a larger problem into a series
of smaller parts, and so on, as required.

9.2.1 Writing algorithms that provide solutions to
problems

There are several methods of writing algorithms before attempting to program a solution. Here
are three frequently used methods.

Structured English is a method of showing the logical steps in an algorithm, using an agreed
subset of straightforward English words for commands and mathematical operations to
represent the solution. These steps can be numbered.

A flowchart shows diagrammatically, using a set of symbols linked together with flow lines,
the steps required for a task and the order in which they are to be performed. These steps,
together with the order, are called an algorithm. Flowcharts are an effective way to show the
structure of an algorithm.

Pseudocode is a method of showing the detailed logical steps in an algorithm, using keywords,
identifiers with meaningful names and mathematical operators to represent a solution.
Pseudocode does not need to follow the syntax of a specific programming language, but it
should provide sufficient detail to allow a program to be written in a high-level language.

Below, you will see the algorithm from the What you should already know section on page 217
written using each of these three methods.

Structured English

1 Ask for the number of values

2 Loop that number of times

3 Enter a value in loop

4 Add the value to the Total in loop

5 Calculate and output average

Pseudocode

Total <« 0
PRINT "Enter the number of values to average"
INPUT Number
FOR Counter <« 1 TO Number
PRINT "Enter wvalue"
INPUT Value
Total < Total + Value
NEXT Counter
Average « Total / Number

PRINT "The average of ", Number, " values is ", Average

You have been asked to write an algorithm for drawing regular polygons of any size.

In pairs, divide the problem into smaller parts, identifying those parts that are similar.
Write down your solution as an algorithm in structured English.

Swap your algorithm with another pair.

Test their algorithm by following their instructions to draw a regular polygon. Discuss any

similarities and differences between your solutions.

Flowchart

Total =0
Counter = 1

1

QUTPUT "Enter the
number of values
to average"

Total = Total + Value
Counter = Counter + 1

Mo
Counter >
Number?

Average =
Total/Number

}

OUTPUT "The average
of ", Number, " values
is ", Average

End

Figure 9.3

9.2.2 Writing simple algorithms using pseudocode

Each line of pseudocode is usually a single step in an algorithm. The pseudocode used in this
book follows the rules in the Cambridge International AS & A Level Computer Science
Pseudocode Guide for Teachers and is set out using a fixed width font and indentation, where
required, of four spaces, except for THEN, ELSE and CASE clauses that are only indented by
two spaces.

All identifier names used in pseudocode should be meaningful; for example, the name of a
person could be stored in the variable identified by Name. They should also follow some basic
rules: they should only contain the characters A—Z, a—z and 0-9, and should start with a letter.
Pseudocode identifiers are usually considered to be case insensitive, unlike identifiers used in a
programming language.

It is good practice to keep track of any identifiers used in an identifier table, such as Table 9.1.

Identifier name Description

StudentName Store a student name

Counter Store a loop counter

StudentMark Store a student mark
Table 9.1

Pseudocode statements to use for writing algorithms.

To input a value:
INPUT StudentName
To output a message or a value or a combination:

OUTPUT "You have made an error"
OUTPUT StudentName
OUTPUT "Student name is ", StudentName

To assign a value to a variable (the value can be the result of a process or a calculation):

Counter « 1

Counter ¢« Counter + 1

MyChar <« "a"

LetterValue <« ASC(MyChar)

StudentMark < 40

Percentage <« (StudentMark / 80) * 100
Oldstring <« "Your mark is"

NewString <« 0ldString & " ninety-seven"

Operators used in pseudocode assignment statements:

+ Addition

- Subtraction

*

Multiplication
Division

String concatenation

1o

Assignment

Identify the values stored in the variables when the assignment statements in the example
above have all been completed. The function ASC returns the ASCII value of a character.

To perform a selection using IF statements for a single choice or a choice and an alternative, and
CASE statements when there are multiple choices or multiple choices and an alternative:

IF - single choice
IF MyValue > YourValue
THEN
OUTPUT "I win"
ENDIF

IF - single choice with alternative
IF MyValue > YourValue
THEN
QUTPUT "I win"
ELSE
OUTPUT "You win"
ENDIF

CASE - multiple choices
CASE OF Direction
"NU: Y — Y o+ 1
ngn: Y o« Y - 1
"EP: X «— X + 1
"W X — X - 1
ENDCASE

CASE - multiple choices with alternative
CASE OF Direction

"N": ¥ «— ¥ + 1

ngn: Y « ¥ - 1

"E": X «— X + 1

"W X« X - 1

OTHERWISE : OUTPUT "Error"
ENDCASE

Relational operators used in pseudocode selection statements:

= Equalto

<> Not equal to
> Greater than
> Less than

>= Greater than or equal to

<= Less than or equal to

Programming languages may not always have the same selection constructs as pseudocode, so it
is important to be able to write a program that performs the same task as a solution given in
pseudocode.

Here are three programs, one in each of the three prescribed programming languages, to
demonstrate the single choice IF statement. Note the construction of the IF statement, as it is
different from the pseudocode.

While the Cambridge International AS Level syllabus does not require you to be able to write
program code, the ability to do so will increase your understanding, and will be particularly
beneficial if you are studying the full Cambridge International A Level course.

Python

IF - single choice Python
myValue = int(input("Please enter my value "))
yourValue = int(input("Please enter your value "))

if myvalue > yourValue:

The colon indicates the start of the THEN clause. All

print ("I win")
statements in the THEN clause are indented as shown

VB

'IF - single choice VB
Module Modulel
Sub Main()
Dim myValue, yourValue As Integer
Console.Write("Please enter my value ")
myValue = Integer.Parse(Console.ReadLine())
Console.Write("Please enter your value ")
yourValue = Integer.Parse(Console.ReadLine())

If myvValue > yourValue Then -—[Use of THEN and END IFJ

Console.WriteLine("I win")

Console.ReadKey() 'wait for keypress
End If
End Sub
End Module

Java

//IF - single choice Java
import java.util.Scanner;
class IFProgram

{

public static void main(String args[])

Scanner myObj = new Scanner(System.in);
System.cut.println("Please enter my value ");
int myValue = myObj.nextInt();
System.out.println("Please enter your value ");

int yourvValue = myObj.nextInt();

{}areusedtoshow“ if (myValue > yourValue)
the start and end of o{
the THEN clause System.out.println("I win");

In the programming language you have chosen to use, write a short program to input
MyValue and YourValue and complete the single choice with an alternative IF statement
shown on page 224. Note any differences in the command words you need to use and the
construction of your programming statements compared with the pseudocode.

In the programming language you have chosen to use, write a short program to set X and Y
to zero, input Direction and complete the multiple choice with an alternative CASE
statement shown on page 224 and output X and Y. Note any differences in the command
words you need to use and the construction of your programming statements compared to
the pseudocode.

To perform iteration using FOR, REPEAT-UNTIL and WHILE loops:

Total « 0 FOR Counter « 1 TO 10 STEP 2
FOR Counter <« 1 TO 10 OUTPUT Counter
OUTPUT "Enter a number " NEXT Counter

INPUT Number

Total < Total + Number
NEXT Counter
OUTPUT "The total is ", Total

A FOR loop has a fixed number of repeats, the STEP increment is an optional expression that
must be a whole number.

REPEAT
OUTPUT "Please enter a positive number "
INPUT Number

UNTIL Number > 0

Statements in a REPEAT loop are always executed at least once.

Number <« 0

WHILE Number >= 0 DO
OUTPUT "Please enter a negative number "
INPUT Number

ENDWHILE

Statements in a WHILE loop may sometimes not be executed.

Programming languages may not always use the same iteration constructs as pseudocode, so it is
important to be able to write a program that performs the same task as a solution given in
pseudocode.

Here are three programs to demonstrate a simple FOR loop, one in each of the three prescribed
programming languages. Note the construction of the FOR statement, as it is different from the
pseudocode.

Python

FOR - simple loop Python

for Counter in range (1,10,2): The colon indicates the start of the
FOR loop. All statements in the FOR

print (Counter) 2
loop are indented as shown

VB

Module
Sub

'FOR - simple loop VB

Modulel

Main()

End Sub
End Module

Dim Counter As Integer

For Counter = 1 To 10 Step 2

Next

Console.ReadKey() 'wait for keypress

Use of STEP

and NEXT
Console.WriteLine(Counter)

Java

{} are used to show
the start and end of
the FOR loop

//FOR - simple loop Java
class FORProgram

{

public static void main(String args(])

{

for (int Counter = 1; Counter <= 10; Counter = Counter + 2)

System.out.println(Counter);
o}

}

WHILE and REPEAT loops and IF statements make use of comparisons to decide whether
statements within a loop are repeated or a statement or group of statements are executed. The
comparisons make use of relational operators and the logic operators AND, OR and NOT. The
outcome of these comparisons is always either true or false.

In the programming language you have chosen to use, write a short program to perform the
same tasks as the other three loops shown in pseudocode. Note any differences in the
command words you need to use, and the construction of your programming statements
compared to the pseudocode.

REPEAT

OUTPUT "Please enter a positive number less than fifty"
INPUT Number

UNTIL (Number > 0) AND (Number < 50)

A simple algorithm can be clearly documented using these statements. A more realistic algorithm
to find the average of a number of integers input would include checks that all the values input

are whole numbers and that the number input to determine how many integers are input is also
positive.

This can be written in pseudocode by making use of the function INT(x) that returns the integer
part of x:

In pseudocode, write statements to check that a number input is between 10 and 20 or over
100. Make use of brackets to ensure that the order of the comparisons is clear.

Total < 0
REPEAT
PRINT "Enter the number of wvalues to average"
INPUT Number
UNTIL (Number > 0) AND (Number = INT(Number))
FOR Counter <« 1 TO Number
REPEAT
PRINT "Enter an integer value "
INPUT Value
UNTIL Value = INT(Value)
Total « Total + Value
NEXT Counter
Average ¢« Total / Number

PRINT "The average of ", Number, " values is ", Average

r

The identifier table for this algorithm is presented in Table 9.2.

Identifier name Description

Total Running total of integer values entered

Number Number of integer values to enter

Value Integer value input

Average Average of all the integer values entered
Table 9.2

Here are three programs to find the average of a number of integers input, one in each of the
three prescribed programming languages. Note the construction of the loops, as they are different
from the pseudocode. All the programming languages check for an integer value.

Python

Find the average of a number of integers input Python
Total = 0

Number = int(input("Enter the number of wvalues to average "))
while Number <= O: An extra input

. , is needed, as a
Number = int(input("Enter the number of values to average "))

WHILE loop
must be used

for Counter in range (1, Number + 1):

The loop ends
before the

Value = int(input("Enter an integer value "))
Total = Total + Value final value is
Average = Total / Number reached

print ("The average of ", Number, " wvalues is ", Average)

VB

'Find the average of a number of integers input VB
Module Modulel
Public Sub Main()
Dim Total, Number, Counter, Value As Integer
Dim Average As Decimal
Do
Console.Write("Enter the number of values to average ")
Number = Integer.Parse(Console.ReadLine())

Loop Until Number > 0
‘“‘*H{LmeofnoandLOOPUNTIL]
For Counter = 1 To Number

Console.Write("Enter an integer value ")
Value = Integer.Parse(Console.ReadLine())
Total = Total + Value
Next
Average = Total / Number
Console.WriteLine("The average of " & Number & " values is " & Average)
Console.ReadKey()
End Sub
End Module

Java

//Find the average of a number of integers input Java
import java.util.Scanner;

class AveragelAlg

{

public static void main(String argsl[])

{

Scanner myObj = new Scanner(System.in);
int Number;

int Total = 0;

A2 {’\{ Use of DO WHILE Ioop]

System.out.println("Enter the number of values to average ");

Number = myObj.nextInt();
1
while (Number < 0);
for (int Counter = 1; Counter <= Number; Counter ++)
{
System.out.println("Enter an integer wvalue ");
int Vvalue = myObj.nextInt();

Total = Total + Value;
} Java automatically performs integer
division when two integers are used

float Average = (float)Total / Number;

System.out.println("The average of " + Number + " values is " + Average);

}

In pseudocode, write an algorithm to set a password for a user when they have to input the
same word twice. Then allow the user three attempts to enter the correct password. Complete
an identifier table for your algorithm.

Finally, check your pseudocode algorithm works by writing a short program from your
pseudocode statements using the same names for your identifiers.

9.2.3 Writing pseudocode from a structured English
description

There are no set rules for writing structured English — the wording just needs to be unambiguous
and easily understandable. Pseudocode is more precise and usually follows an agreed set of rules.
From a structured English description, the following things need to be possible:

* Any variables that need to be used can be identified and put in an identifier table — these can be
items input or output as the results of calculations.

+ Input and output can be identified from the wording used, for example, Enter, Read, Print,
Write.

* Selection can be identified from the wording used, for example, If, Then, Choose.
 Any iteration required can be identified from the wording used, for example, Loop, Repeat.
* Any processes needed can be identified from the wording used, for example, Set, Calculate.

When the identifier table is complete, each structured English statement can be used to write one
or more pseudocode statements, keeping the same order as the structured English.

Here is an example of an algorithm to calculate a runner’s marathon time in seconds, using
structured English.

1 Enter time taken to run marathon in hours, and seconds
2 Calculate and store
3 Output

This can be used to identify the variables required and complete the identifier table (Table 9.3).

Identifier name Description

MarathonHours The hours part of the marathon time

The minutes part of the marathon time

MarathonSeconds The seconds part of the marathon time

Total marathon time in seconds

Table 9.3

Using these identifiers, each step of the structured English algorithm can be converted to
pseudocode, as demonstrated below.

1 Enter time taken to run marathon in hours, minutes and seconds

There are three variables used: MarathonHours, MarathonMinutes and MarathonSeconds. This is
explicitly input and implicitly output as the user needs to understand what input is required. The
pseudocode required is as follows.

OUTPUT "Enter the time you took to run the marathon"
OUTPUT "Enter hours"

INPUT MarathonHours

OUTPUT "Enter minutes"

INPUT MarathonMinutes

OUTPUT "Enter seconds"

INPUT MarathonSeconds

2 Calculate and store marathon time in seconds

This is a process using the variables MarathonHours, MarathonMinutes and MarathonSeconds
and using an assignment statement to store the result in TotalMarathonTimeSeconds. The
pseudocode required is as follows.

TotalMarathonTimeSeconds ¢« (MarathonHours * 3600

+ MarathonMinutes) * 60 + MarathonSeconds

3 Output marathon time in seconds

This is output using the variable TotalMarathonTimeSeconds. The pseudocode required is as
follows.

OUTPUT "Time for marathon in seconds "
TotalMarathonTimeSeconds

r

The structured English description has been extended below to check the runner’s time against
their personal best.

1 Enter time taken to run marathon in hours, minutes and seconds

2 Calculate and store marathon time in seconds

3 Output marathon time in seconds

4 Enter personal best time in seconds

5 If marathon time in seconds is shorter than the personal best time then
6 Reset personal best time in seconds

7 Output the personal best time

Extend the identifier table and write the extra pseudocode to complete the algorithm. Then

check your algorithm works by writing a short program from your pseudocode statements
using the same names for your identifiers.

9.2.4 Writing pseudocode from a flowchart

Flowcharts are diagrams showing the structure of an algorithm using an agreed set of symbols, as
shown in Table 9.4.

Pseudocode Flowchart symbol

INPUT or OUTPUT

IF or CASE
Part of FOR, REPEAT and WHILE

FOR, REPEAT and WHILE

O

Returning flow line

Assignment — using a calculation or a pre-defined process, for
example, INT

Table 9.4

Flowcharts can be used to identify any variables required and you can then complete an identifier
table. Each flowchart symbol can be used to identify and write one or more pseudocode
statements.

Here is an example of a flowchart of an algorithm that can be used to check an exam grade:

OUTPUT "Enter
your exam mark"
INPUT Mark

Grade = "Fail"

h 4

Yes
Grade = "Pass"

Mo

Yes

Mark < 807 Grade = "Merit" ——pf

MNo

Grade =
"Distinction"

OUTPUT "Your
grade is ", Grade

Figure 9.4

The same algorithm is presented in pseudocode on the left. Below is the identifier table:

Identifier name Description

Mark Exam mark

Grade Exam grade
Table 9.5

o o o and o form a nested selection (IF) structure, as each following statement is part of

the ELSE clause. It is only at o that the selection is complete. The flowchart shows this clearly
and the pseudocode uses indentation to show the nesting.

OUTPUT "Enter your exam mark"
INPUT Mark
IF Mark < 40

THEN
Grade ¢« "Fail"
ELSE
IF Mark < 60
THEN
Grade <« "Pass"
ELSE
IF Mark < 80
THEN
Grade < "Merit"
ELSE
Grade <« "Distinction"
ENDIF
ENDIF
ENDIF

OUTPUT "Your grade is ", Grade

9.2.5 Stepwise refinement

The algorithms looked at so far have been short and simple. When an algorithm is written to
solve a more complex problem, decomposition is used to break the problem down into smaller
and more manageable parts. These parts then need to be written as a series of steps where each
step can be written as a statement in a high-level programming language, this process is called
stepwise refinement.

Many problems are more complex than they seem if a robust solution is to be developed. Look at
the first step of the structured English to calculate a time in seconds.

1 Enter time taken to run marathon in hours, minutes and seconds
2 Calculate and store marathon time in seconds
3 Output marathon time in seconds

The first step can be further broken down, as follows:

1.1 Enter the hours
1.2 Enter the minutes

1.3 Enter the seconds

The flowchart on page 232 has been extended to allow more than one mark to be input.

{ Start

.
|

r

YOur exa

/

OUTPUT "Enter

m mark"

b

4

INPUT Mark

/
/

s

o
Ye

ark < 807

o

Grade = "Fail"

Grade = "Pass"

Grade = "Merit"

Grade =
" Distinction™

L

r

OUTPU
grade is

/

T "Your Z

o Grade/"'

r

exam m

/

OUTPUT "Enter another

ark Y/N"

/

h

y

/ INFUT

" Replyu /

Yes

Extend the identifier table and write the extra pseudocode to complete the algorithm. Then

Reply = "Y"7?

check your algorithm works by writing a short program from your pseudocode statements
using the same names for your identifiers.

Each of these steps can be broken down further:

1.1.1 Input value for hours

1.1.2 Check input in the range 2 to 8

1.1.3 Reject if out of range or not a whole number and re-input value step 1.1.1
1.1.4 Accept and store value in hours

1.2.1 Input value for minutes

1.2.2 Check input in the range 0 to 59

1.2.3 Reject if out of range or not a whole number and re-input value step 1.2.1
1.2.4 Accept and store value in minutes

1.3.1 Input value for seconds

1.3.2 Check input in the range 0 to 59

1.3.3 Reject if out of range or not a whole number and re-input value step 1.3.1

1.3.4 Accept and store value in seconds

These steps can now be written in pseudocode. For example, the input routine for the seconds:

REPEAT
OUTPUT "Enter seconds"
INPUT Value
UNTIL (Value >= 0) AND (Value <= 59) AND (Value = INT(Value))

MarathonSeconds « Value

Look at the algorithm to calculate the area of a chosen shape written in structured English
below. Use stepwise refinement to break each step into more manageable parts then rewrite the
algorithm using pseudocode.

1 Choose the shape (square, triangle, circle)
2 Enter the length(s)

3 Calculate the area

4 Output the area

Then check your pseudocode algorithm works by writing a short program from your
pseudocode statements using the same names for your identifiers.

End of chapter questions

1

Algorithms can be shown as structured English, flowcharts and pseudocode.
Explain what is meant by

a) structured English
b) a flowchart
¢) pseudocode.

Several techniques are used in computational thinking.
Explain what is meant by

a) abstraction

b) decomposition

c) pattern recognition.

Describe, using an example, the process of stepwise refinement.

Computer programs have to evaluate expressions.
— Study the sequence of pseudocode statements.
— Write down the value assigned to each variable.

DECLARE h, w, r, Perimeter, Area : REAL
DECLARE A, B, C, D, E : BOOLEAN
h « 13.6 w « 6.4

Perimeter « (h + w) * 2

r =« 10

Area 3.142 * r*2
Z e 11 + ¥ / 5 + 3
A « NOT(r > 10)

a) Perimeter
b) Area
c) Z

d) A

(2]

[2]

(2]

[2]

(2]

[2]

[2]

(1]

(1]

(1]

(1]

Cambridge International AS & A Level Computer Science 9608
Paper 21 Q1 November 2015

5 Study the pseudocode and answer the following questions. Line numbers have been added to

help you.
01 REPEAT
02 OUTPUT "Menu Temperature Conversion"
03 OUTPUT "Celsius to Fahrenheit i
04 OUTPUT "Fahrenheit to Celsius 2n
05 OUTPUT "Exit 31
06 OUTPUT "Enter choice"
07 IF Choice = 1 OR Choice = 2
08 THEN
09 OUTPUT "Enter temperature"
10 INPUT Temperature
11 IF Choice = 1
12 THEN
13 ConvertedTemperature < 1.8*Temperature + 32
14 ELSE
15 ConvertedTemperature ¢« (Temperature - 32) * 5 / 9
16 ENDIF
17 OUTPUT "Converted temperature is ", ConvertedTemperature
18 ELSE
19 IF Choice <> 3
20 THEN
21 OUTPUT "Error in choice"
22 ENDIF
23 ENDIF
24 UNTIL Choice = 3

a) Give the line number of:

i) an assignment statement

(1]

ii) a selection

(1]

iii) an iteration.

(1]

b) Complete an identifier table for the algorithm.
[3]
¢) Extend the algorithm to only allow four tries for a correct choice.

[3]

	AS LEVEL
	9 Algorithm design and problem solving
	9.1 Computational thinking skills
	9.2 Algorithms

