
5 System software
In this chapter, you will learn about
•  why computers need an operating system
•  key management tasks, such as memory management, file management, security

management, hardware management and process management
•  the need for utility software, including disk formatters, virus checkers, defragmentation

software, disk content analyse and repair software, file compression and back-up software
•  program libraries, software under development using program library software and the

benefits to software developers, including the use of dynamic link library (DLL) files
•  the need for these language translators: assemblers, compilers and interpreters
•  the benefits and drawbacks of using compilers or interpreters
•  an awareness that high level language programs may be partially compiled and partially

interpreted (such as JavaTM)
•  the features of a typical integrated development environment (IDE) for

– coding (using context-sensitive prompts)
– initial error detection (including dynamic syntax checks)
– presentation (including pretty print, expand and collapse code blocks)
– debugging (for example, single stepping, use of breakpoints, variables/expressions report

windows).



 5.1 Operating systems
WHAT YOU SHOULD ALREADY KNOW
Try these five questions before you read the first part of this chapter.
1  Microprocessors are commonly used to control microwave ovens, washing machines and

many other household items.
Explain why it is not necessary for these devices to have an operating system.

2  a)  Name three of the most common operating systems used in computers and other devices,
such as mobile phones and tablets.

b)  A manufacturer makes laptop computers, mobile phones and tablets.
Explain why it is necessary for the manufacturer to develop different versions of its
operating system for use on its computers, mobile phones and tablets.

3  Most operating systems offer a graphic user interface (GUI) as well as a command line
interface (CLI).
a)  What are the main differences between the two types of interface?
b)  What are the pros and cons of both types of interface?
c)  Who would use each type of interface?

4  Before the advent of the operating system, computers relied on considerable human
intervention.
Find out the methods used to start up early computers to prepare them for the day’s tasks.

5  Describe the role of buffers and interrupts when a printing job is being sent to an inkjet
printer.
Consider the different operational speeds of a processor and a printer, together with size of
printing job and interrupt priorities.
Describe potential error scenarios – such as paper jam, out of paper or out of ink – and how
these could affect the printing job.

Key terms
CMOS – complementary metal-oxide semiconductor.

Operating system – software that provides an environment in which applications can run and
provides an interface between hardware and human operators.

HCI – human–computer interface.

GUI – graphical user interface.

CLI – command line interface.

Icon – small picture or symbol used to represent, for example, an application on a screen.

WIMP – windows, icons, menu and pointing device.

Post-WIMP – interfaces that go beyond WIMP and use touch screen technology rather than a



pointing device.

Pinching and rotating – actions by fingers on a touch screen to carry out tasks such as move,
enlarge, reduce, and so on.

Memory management – part of the operating system that controls the main memory.

Memory optimisation – function of memory management that determines how memory is
allocated and deallocated.

Memory organisation – function of memory management that determines how much memory
is allocated to an application.

Security management – part of the operating system that ensures the integrity, confidentiality
and availability of data.

Contiguous – items next to each other.

Virtual memory systems – memory management (part of OS) that makes use of hardware and
software to enable a computer to compensate for shortage of actual physical memory.

Memory protection – function of memory management that ensures two competing
applications cannot use same memory locations at the same time.

Process management – part of the operating system that involves allocation of resources and
permits the sharing and exchange of data.

Hardware management – part of the operating system that controls all input/output devices
connected to a computer (made up of sub-management systems such as printer management,
secondary storage management, and so on).

Device driver – software that communicates with the operating system and translates data into
a format understood by the device.

Utility program – parts of the operating system which carry out certain functions, such as
virus checking, defragmentation or hard disk formatting.

Disk formatter – utility that prepares a disk to allow data/files to be stored and retrieved.

Bad sector – a faulty sector on an HDD which can be soft or hard.

Antivirus software – software that quarantines and deletes files or programs infected by a
virus (or other malware). It can be run in the background or initiated by the user.

Heuristic checking – checking of software for behaviour that could indicate a possible virus.

Quarantine – file or program identified as being infected by a virus which has been isolated
by antivirus software before it is deleted at a later stage.

False positive – a file or program identified by a virus checker as being infected but the user
knows this cannot be correct.

Disk defragmenter – utility that reorganises the sectors on a hard disk so that files can be
stored in contiguous data blocks.

Disk content analysis software – utility that checks disk drives for empty space and disk
usage by reviewing files and folders.



Disk compression – software that compresses data before storage on an HDD.

Back-up utility – software that makes copies of files on another portable storage device.

Program library – a library on a computer where programs and routines are stored which can
be freely accessed by other software developers for use in their own programs.

Library program – a program stored in a library for future use by other programmers.

Library routine – a tested and ready-to-use routine available in the development system of a
programming language that can be incorporated into a program.

Dynamic link file (DLL) – a library routine that can be linked to another program only at the
run time stage.



5.1.1 The need for an operating system
Early computers had no operating system at all. Control software had to be loaded each time the
computer was started – this was done using either paper tape or punched cards.

In the 1970s, the home computer was becoming increasingly popular. Early examples, such as
the Acorn BBC B, used an internal ROM chip to store part of the operating system. A cassette
tape machine was also used to load the remainder of the operational software (see Figure 5.1).
This was necessary to ‘get the computer started’ and used a welcome cassette tape which had to
be used each time the computer was turned on.

Figure 5.1 An Acorn BBC B (left) and its cassette tape machine (right)

As the hard disk drive (HDD) was developed, operating systems were stored on the hard disk,
and start-up of the motherboard was handled by the basic input/output system (BIOS). Initially,
the BIOS was stored on a ROM chip but, in modern computers, the BIOS contents are stored on
a flash memory chip. The BIOS configuration is stored in CMOS memory (complementary
metal-oxide semiconductor) which means it can be altered or deleted as required.

The required part of the operating system is copied into RAM – since operating systems are now
so large, it would seriously affect a computer’s performance if it was all loaded into RAM at
once. An operating system provides both the environment in which applications can be run, and
a useable interface between humans and computer. An operating system also disguises the
complexity of computer hardware. Common examples include Microsoft Windows®, Apple
Mac OS, Google Android and IOS (Apple mobile phones and tablets).

The human–computer interface (HCI) is usually achieved through a graphical user interface
(GUI), although it is possible to use a command line interface (CLI) if the user wishes to
directly communicate with the computer.

A CLI requires a user to type instructions to choose options from menus, open software, and so
on. There are often a number of commands that need to be typed; for example, to save or load a
file. The user, therefore, has to learn a number of commands (which must be typed exactly with
no errors) just to carry out basic operations. Furthermore, it takes time to key in commands every
time an operation has to be carried out.

The advantage of CLI is that the user is in direct communication with the computer and is not
restricted to a number of pre-determined options.

For example, the following section of CLI imports data from table A into table B. It shows how



complex it is just to carry out a straightforward operation.

A GUI allows the user to interact with a computer (or MP3 player, gaming device, mobile phone,
and so on) using pictures or symbols (icons). For example, the whole of the above CLI code
could have been replaced by a single icon, like the one on the left.

Table update

Selecting this icon would execute all of the steps shown in the CLI without the need to type
them.

GUIs use various technologies and devices to provide the user interface. One of the first
commonly used GUI environments was known as windows, icons, menu and pointing device
(WIMP), which was developed for use on personal computers (PCs). Here, a mouse is used to
control a cursor and icons are selected to open and run windows. Each window contains an
application. Modern computer systems allow several windows to be open at the same time. An
example is shown in Figure 5.2.

Figure 5.2 An example of WIMP

A windows manager looks after the interaction between windows, the applications and
windowing system (which handles the pointing devices and the cursor’s position).

However, smart phones, tablets and many computers now use a post-WIMP interaction where
fingers are in contact with the screen, allowing actions such as pinching and rotating which are
difficult using a single pointer and device such as a mouse. Also, simply tapping the icon with a
finger (or stylus) will launch the application. Developments in touch screen technology mean
these flexible HCIs are now readily available.



5.1.2 Operating system tasks

Figure 5.3 Operating system tasks

Memory management
Memory management, as the name suggests, is the management of a computer’s main memory.
This can be broken down into three parts: memory optimisation, memory organisation and
memory protection.

Memory optimisation
Memory optimisation is used to determine how computer memory is allocated and deallocated
when a number of applications are running simultaneously. It also determines where they are
stored in memory. It must, therefore, keep track of all allocated memory and free memory
available for use by applications. To maintain optimisation of memory, it will also swap data to
and from the HDD or SSD.

Memory organisation
Memory organisation determines how much memory is allocated to an application, and how the
memory can be split up in the most appropriate or efficient manner.

This can be done with the use of
•  a single (contiguous) allocation, where all of the memory is made available to a single

application. This is used by MS-DOS and by embedded systems
•  partitioned allocation, where the memory is split up into contiguous partitions (or blocks) and

memory management then allocates a partition (which can vary in size) to an application
•  paged memory, which is similar to partitioned allocation, but each partition is of a fixed size.

This is used by virtual memory systems
•  segmented memory, which is different because memory blocks are not contiguous – each

segment of memory will be a logical grouping of data (such as the data which may make up an
array).

Memory protection
Memory protection ensures that two competing applications cannot use the same memory
locations at the same time. If this was not done, data could be lost, applications could produce
incorrect results, there could be security issues, or the computer may crash.



Memory protection and memory organisation are different aspects of an operating system. An
operating system may use a typical type of memory organisation (for example, it may use paging
or segmentation) but it is always important that no two applications can occupy the same part of
memory. Therefore, memory protection must always be a part of any type of memory
organisation used.

Figure 5.4 shows how different applications can be kept separate from each other.

Figure 5.4 Memory protection

Security management
Security management is another part of a typical operating system. The function of security
management is to ensure the integrity, confidentiality and availability of data.

This can be achieved by
•  carrying out operating system updates as and when they become available
•  ensuring that antivirus software (and other security software) is always up-to-date
•  communicating with, for example, a firewall to check all traffic to and from the computer
•  making use of privileges to prevent users entering ‘private areas’ on a computer which permits

multi-user activity (this is done by setting up user accounts and making use of passwords and
user IDs). This helps to ensure the privacy of data

•  maintaining access rights for all users
•  offering the ability for the recovery of data (and system restore) when it has been lost or

corrupted
•  helping to prevent illegal intrusion to the computer system (also ensuring the privacy of data).

Note: many of these features are covered in more depth elsewhere in this chapter or in other
chapters.



EXTENSION ACTIVITY 5A
While working through the remainder of Chapters 5 and 6, find out all of the methods available
to ensure the security, privacy and integrity of data and how these link into the operating
system security management. It is important to distinguish between what constitutes security,
privacy and integrity of data.

Process management
A process is a program which is being run on a computer. Process management involves the
allocation of resources and permits the sharing and exchange of data, thus allowing all processes
to be fully synchronised (for example, by the scheduling of resources, resolution of software
conflicts, use of queues and so on). This is covered in more depth in Chapter 16.

Hardware management
Hardware management involves all input and output peripheral devices.

The functions of hardware management include
•  communicating with all input and output devices using device drivers
•  translating data from a file (defined by the operating system) into a format that the input/output

device can understand using device drivers
•  ensuring each hardware resource has a priority so that it can be used and released as required.

The management of input/output devices is essentially the control and management of queues
and buffers. For example, when printing out a document, the printer management
•  locates and loads the printer driver into memory
•  sends data to a printer buffer ready for printing
•  sends data to a printer queue (if the printer is busy or the print job has a low priority) before

sending to the printer buffer
•  sends various control commands to the printer throughout the printing process
•  receives and handles error messages and interrupts from the printer.

EXTENSION ACTIVITY 5B
Write down the tasks carried out by a keyboard manager when a user types text using a word
processor. Consider the use of buffers and queues in your answer.

File management
The main tasks of file management include
•  defining the file naming conventions which can be used (filename.docx, where the extension

can be .bat, .htm, .dbf, .txt, .xls, and so on)
•  performing specific tasks, such as create, open, close, delete, rename, copy, move
•  maintaining the directory structures
•  ensuring access control mechanisms are maintained, such as access rights to files, password

http://filename.docx


protection, making files available for editing, locking files, and so on
•  specifying the logical file storage format (such as FAT or NTFS if Windows is being used),

depending on which type of disk formatter is used (see Section 5.1.3)
•  ensuring memory allocation for a file by reading it from the HDD/SSD and loading it into

memory.



5.1.3 Utility software
Computer users are provided with a number of utility programs that are part of the operating
system. However, users can also install their own utility software in addition. This software is
usually initiated by the user, but some, such as virus checkers, can be set up to constantly run in
the background. Utility software offered by most operating systems includes
•  hard disk formatter
•  virus checker
•  defragmentation software
•  disk contents analysis/repair software
•  file compression
•  back-up software.

Hard disk formatter
A new hard disk drive needs to be initialised ready for formatting. The operating system needs to
know how to store files and where the files will be stored on the hard disks. A disk formatter
will organise storage space by assigning it to data blocks (partitions). A disk surface may have a
number of partitions (see Chapter 3 for more details regarding the organisation of data on hard
disks). Note that partitions are contiguous blocks of data.

Once the partitions have been created, they must be formatted. This is usually done by writing
files which will hold directory data and tables of contents (TOC) at the beginning of each
partition. This allows the operating system to recognise a file and know where to find it on the
disk surface. Different operating systems will use different filing systems; Windows, for
example, uses new technology filing system (NTFS).

When carrying out full formatting using NTFS, all disk sectors are filled with zeros; these zeros
are read back, thus testing the sector, but any data already stored there will be lost. So, it is
important to remember that reformatting an HDD which has already been used will result in loss
of data during the formatting procedure.

Disk formatters also have checking tools, which are non-destructive tests that can be carried out
on each sector. If any bad sector errors are discovered, the sectors will be flagged as ‘bad’ and
the file tracking records will be reorganised – this is done by replacing the bad sectors with new
unused sectors, effectively repairing the faulty disk. A damaged file will now contain an ‘empty’
sector, which allows the file to be read but it will be corrupted since the bad sector will have
contained important (and now lost) data. It would, therefore, be prudent to delete the damaged
file leaving the rest of the HDD effectively repaired.

Bad sectors can be categorised as hard or soft. There are a number of ways that they can be
produced, as shown in Table 5.1.

Hard bad sectors (difficult to repair) Soft bad sectors

•  caused by manufacturing errors
•  damage to disk surface caused by allowing the read-

•  sudden loss of power leading to
data corruption in some of the
sectors



write head to touch the disk surface (for example, by
moving HDD without first parking the read-write
head)

•  system crash which could lead to damage to the disk
surface(s)

•  effect of static electricity leading
to corruption of data in some of
the sectors on the hard disk
surfaces

▲ Table 5.1 Hard and soft bad sectors

Virus checkers
Any computer (including mobile phones and tablets) can be subject to a virus attack (see Chapter
6).

There are many ways to help prevent viruses, such as being careful when downloading material
from the internet, not opening files or links in emails from unknown senders, and by only using
certified software. However, virus checkers – which are offered by operating systems – still
provide the best defence against malware, as long as they are kept up to date and constantly run
in the background.

Running antivirus software in the background on a computer will constantly check for virus
attacks. Although various types of antivirus software work in different ways, they have some
common features. They
•  check software or files before they are run or loaded on a computer
•  compare possible viruses against a database of known viruses
•  carry out heuristic checking – this is the checking of software for types of behaviour that

could indicate a possible virus, which is useful if software is infected by a virus not yet on the
database

•  put files or programs which may be infected into quarantine, to
–  automatically delete the virus, or
–  allow the user to decide whether to delete the file (it is possible that the user knows that the

file or program is not infected by a virus – this is known as a false positive and is one of the
drawbacks of antivirus software).

Antivirus software needs to be kept up to date since new viruses are constantly being discovered.
Full system checks need to be carried out once a week, for example, since some viruses lie
dormant and would only be picked up by this full system scan.

Defragmentation software
As an HDD becomes full, blocks used for files will become scattered all over the disk surface (in
potentially different sectors and tracks as well as different surfaces). This happens as files are
deleted, partially-deleted, extended and so on. The consequence is slower data access time: the
HDD read-write head requires several movements just to find and retrieve the data making up the
required file. It would be advantageous if files could be stored in contiguous sectors,
considerably reducing HDD head movements.

Note that, due to their different operation when accessing data, this is less of a problem with
SSDs.



Consider the following example using a disk with 12 sectors per surface.

We have three files (1, 2 and 3) stored on track 8 of the disk surface.

Figure 5.5

File 2 is deleted by the user and file 1 has data added to it. However, the file 2 sectors which
become vacant are not filled up straight away by new file 1 data since this would require ‘too
much effort’ for the HDD resources.

We get the following.

Figure 5.6

File 1 has been extended to write data in sectors 10 and 11.

Now, suppose file 3 is extended with the equivalent of 3.25 blocks of data. This requires filling
up sector 9 and then moving to some empty sectors to write the remainder of the data – the next
free sectors are on track 11.

Figure 5.7

If this continues, the files just become more and more scattered throughout the disk surfaces. It is
possible for sectors 4, 5 and 6 (on track 8) to eventually become used if the disk starts to fill up
and it has to use up whatever space is available. A disk defragmenter will rearrange the blocks
of data to store files in contiguous sectors wherever possible; however, if the disk drive is almost
full, defragmentation may not work. Assuming we can carry out defragmentation, then track 8
now becomes:

Figure 5.8

This allows for much faster data access and retrieval since the HDD now requires fewer read-
write head movements to access and read files 1 and 3. Some defragmenters also carry out clean
up operations. Data blocks can become damaged after several read/write operations (this is
different to bad sectors). If this happens, they are flagged as ‘unusable’ and any subsequent write
operation will avoid writing data to data blocks which have become affected.

Disk content analysis/repair software



The concept of disk repair software was discussed in the above section. Disk content analysis
software is used to check disk drives for empty space and disk usage by reviewing files and file
folders. This can lead to optimal use of disk space by the removal of unwanted files and
downloads (such as the deletion of auto saving files, cookies, download files, and so on).

Disk compression and file compression
File compression is essential to save storage space and make it quicker to download/upload files
and quicker to send files via email. It was discussed in Chapter 1.

Disk compression is much less common these days due to the vast size of HDDs (often more
than 2 TB). The disk compression utility compresses data before writing it to hard disk (and
decompresses it again when reading this data). It is a high priority utility and will essentially
override all other operating system routines – this is essential because all applications need to
have access to the HDD. It is important not to uninstall disk compression software since this
would render any previously saved data to be unreadable.

Back-up software
While it is sensible to take manual back-ups using, for example, a memory stick or portable
HDD, it is also good practice to use the operating system back-up utility. This utility will
•  allow a schedule for backing up files to be made
•  only carry out a back-up procedure if there have been any changes made to a file.

For total security, there should be three versions of a file:

1  The current (working) version stored on the internal HDD.
2  A locally backed up copy of the file (stored on a portable SSD, for example).
3  A remote back-up version stored well away from the computer (using cloud storage, for

example).

Windows environment offers the following facilities using the back-up utility:
•  The ability to restore data, files or the computer from the back-up (useful if there has been a

problem and files have been lost and need to be recovered).
•  The ability to create a restore point (this restores a computer to its state at some point in the

past; this can be very useful if a very important file has been deleted and cannot be recovered
by any of the other utilities).

•  Options of where to save back-up files; this can be set up from the utility to ensure files are
automatically backed up to a chosen device.

Windows uses File History, which takes snapshots of files and stores them on an external HDD
at regular intervals. Over a period of time, File History builds up a vast library of past versions of
files – this allows a user to choose which version of the file they want to use. File History
defaults to backing up every hour and retains past versions of files forever unless the user
changes the settings.

Mac OS offers the Time Machine back-up utility. This erases the contents of a selected drive and
replaces them with the contents from the back-up. To use this facility it is necessary to have an
external HDD or SSD (connected via USB port) and ensure that the Time Machine utility is
installed and activated on the selected computer. Time machine will automatically



•  back up every hour
•  keep daily back-ups for the past month, and
•  keep weekly back-ups for all the previous months.

Note that once the back-up HDD or SSD is almost full, the oldest back-ups are deleted and
replaced with the newest back-up data. Figure 5.9 shows the Time Machine message:

Figure 5.9 Screen shot of Time Machine message



5.1.4 Program libraries
Program libraries are used
•  when software is under development and the programmer can utilise pre-written subroutines in

their own programs, thus saving considerable development time
•  to help a software developer who wishes to use dynamic link library (DLL) subroutines in their

own program, so these subroutines must be available at run time.

When software routines are written (such as a sort routine), they are frequently saved in a
program library for future use by other programmers. A program stored in a program library is
known as a library program. We also have the term library routines to describe subroutines
which could be used in another piece of software under development.

Suppose we are writing a game for children with animated graphics (of a friendly panda) using
music routines and some scoreboard graphics.

Figure 5.10

This game could be developed using existing routines from a library.



Figure 5.11

Developing software in this way
•  removes the need to rewrite the many routines every single time (thus saving considerable time

and cost)
•  leads to modular programming, which means several programmers can be working on the

same piece of software at the same time
•  allows continuity with other games that may form part of a whole range (in education, where

there may be a whole suite of programs, for example)
•  allows the maintenance of a ‘corporate image’ in all the software being developed by a

particular company
•  saves considerable development time having to test each routine, since the routines are all fully

tested in other software and should be error-free.

All operating systems have two program libraries containing library programs and library
routines: static and dynamic.

In static libraries, software being developed is linked to executable code in the library at the time
of compilation. So the library routines would be embedded directly into the new program code.

In dynamic libraries, software being developed is not linked to the library routines until actual
run time (these are known as dynamic link library files or DLL). These library routines would
be stand-alone files only being accessed as required by the new program – the routines will be
available to several applications at the same time.

When using DLL, since the library routines are not loaded into RAM until required, memory is
saved, and software runs faster. For example, suppose we are writing new software which allows
access to a printer as part of its specification. The main program will be developed and compiled.
Once the object code is run, it will only access (and load up) the printer routine from DLL when
required by the user of the program. The main program will only contain a link to the printer
library routine and will not contain any of the actual printer routine coding in the main body.
Table 5.2 summarises the pros and cons of using DLL files.

Pros of using DLL files Cons of using DLL files

the executable code of the main program is
much smaller since DLL files are only
loaded into memory at run time

the executable code is not self-contained,
therefore all DLL files need to be available at
run time otherwise error messages (such as



missing .dll error) will be generated and the
software may even crash

it is possible to make changes to DLL files
independently of the main program,
consequently if any changes are made to the
DLL files it will not be necessary to
recompile the main program

any DLL linking software in the main program
needs to be available at run time to allow links
with DLL files to be made

DLL files can be made available to a number
of applications at the same time

if any of the DLL files have been changed
(either intentionally or through corruption) this
could lead to the main program giving
unexpected results or even crashing

all of the above save memory and also save
execution time

malicious changes to DLL files could be due to
the result of malware, thus presenting a risk to
the main program following the linking process

Table 5.2 Pros and cons of using DLL files

ACTIVITY 5A
1  a)  i)   Explain why a computer needs an operating system.

ii)  Name two management tasks carried out by the operating system.
b)  A new program is to be written in a high level language. The developer has decided to

use DLL files in the design of the new program.
i)   Explain what is meant by a DLL file. How does this differ from a static library

routine?
ii)  Describe two potential drawbacks of using DLL files in the new program.

2  A company produces glossy geography magazines. Each magazine is produced using a
network of computers where thousands of photographs and drawings need to be stored. The
computers also have an external link to the internet.
Name, and describe the function of, three utility programs the company would use on all its
computers.

3  A computer user has a number of important issues, listed below.
For each issue, name a utility which could help solve it. Give a reason for each choice.
a)  The user wants to send a number of very large attachments by email, but the recipient

cannot accept attachments greater than 20 MB.
b)  The user has accidentally deleted files in the past. It is essential that this cannot happen

in the future.
c)  The user has had their computer for a number a years. The time to access and retrieve

data from the hard disk drive is increasing.
d)  Last week, the user clicked on a link in an email from a friend, since then the user’s

computer is running slowly, files are being lost, and they are receiving odd messages.
e)  Some of the files on the user’s HDD have corrupted and will not open and this is

affecting the performance of the HDD.





 5.2 Language translators
WHAT YOU SHOULD ALREADY KNOW
Try these two questions before you read the second part of this chapter:
1  a)  Name two types of language translator.

b)  Identify a method, other than using a translator, of executing a program written in a high-
level language.

2  Most modern language translators offer an Integrated Development Environment (IDE) for
program development.
a)  Which IDE are you using?
b)  Describe five features offered by the IDE you use.
c)  Which feature do you find most useful? Why is it useful to you?

Key terms
Translator – the systems software used to translate a source program written in any language
other than machine code.

Compiler – a computer program that translates a source program written in a high-level
language to machine code or p-code, object code.

Interpreter – a computer program that analyses and executes a program written in a high-level
language line by line.

Prettyprinting – the practice of displaying or printing well set out and formatted source code,
making it easier to read and understand.

Integrated development environment (IDE) – a suite of programs used to write and test a
computer program written in a high-level programming language.

Syntax error – an error in the grammar of a source program.

Logic error – an error in the logic of a program.

Debugging – the process of finding logic errors in a computer program by running or tracing
the program.

Single stepping – the practice of running a program one line/instruction at a time.

Breakpoint – a deliberate pause in the execution of a program during testing so that the
contents of variables, registers, and so on can be inspected to aid debugging.

Report window – a separate window in the run-time environment of the IDE that shows the
contents of variables during the execution of a program.



5.2.1 Translation and execution of programs
Instructions in a program can only be executed when written in machine code and loaded into the
main memory of a computer. Programming instructions written in any programming language
other than machine code must be translated before they can be used. The systems software used
to translate a source program written in any language other than machine code are translators.
There are three types of translator available, each translator performs a different role.

Assemblers
Programs written in assembly language are translated into machine code by an assembler
program. Assemblers either store the program directly in main memory, ready for execution, as it
is translated, or they store the translated program on a storage medium to be used later. If stored
for later use, then a loader program is also needed to load the stored translated program into main
memory before it can be executed. The stored translated program can be executed many times
without being re-translated.

Every different type of computer/chip has its own machine code and assembly language. For
example, MASM is an assembler that is used for the X86 family of chips, while PIC and GENIE
are used for microcontrollers. Assembly language programs are machine dependent; they are not
portable from one type of computer/chip to another.

Here is a short sample PIC assembly program:

 movlw B’00000000’
 tris PORTB
 movlw B’00000011’
 movwf PORTB
stop: goto stop

EXTENSION ACTIVITY 5C
Find out what task this very short sample PIC assembly program is performing.

Assembly language programs are often written for tasks that need to be speedily executed, for
example, parts of an operating system, central heating system or controlling a robot.

Compilers and interpreters
Programs written in a high-level language can be either translated into machine code by a
compiler program, or directly executed line-by-line using an interpreter program.

Compilers usually store the translated program (object program) on a storage medium ready to
be executed later. A loader program is needed to load the stored translated program into main
memory before it can be executed. The stored translated program can be executed many times
without being retranslated. The program will only need to be retranslated when changes are made
to the source code.



With an interpreter, no translated program is generated in main memory or stored for later use.
Every line in a program is interpreted then executed each time the program is run.

High-level language programs are machine independent, portable and can be run on any type of
computer/chip, provided there is a compiler or interpreter available. For example, Java, Python
and Visual Basic® (VB) are high-level languages often used for teaching programming.

EXTENSION ACTIVITY 5D
Find out about three more high-level programming languages that are being used today.

The similarities and differences between assemblers, compilers and interpreters are shown in
Table 5.3.

Table 5.3 Similarities and differences between assemblers, compilers and interpreters



5.2.2 Pros and cons of compiling or interpreting a
program
Both compilers and interpreters are used for programs written in high-level languages. Some
integrated development environments (IDEs) have both available for programmers, since
interpreters are most useful in the early stages of development and compilers produce a stand-
alone program that can be executed many times without needing the compiler.

Table 5.4 shows the pros (in the blue cells) and cons (in the white cells) of compilers and
interpreters.

Compiler Interpreter

The end user only needs the executable code,
therefore, the end user benefits as there is no
need to purchase a compiler to translate the
program before it is used.

The end user will need to purchase a
compiler or an interpreter to translate the
source code before it is used.

The developer keeps hold of the source code, so
it cannot be altered or extended by the end user,
therefore, the developer benefits as they can
charge for upgrades and alterations.

The developer relinquishes control of the
source code, making it more difficult to
charge for upgrades and alterations.
Since end users can view the source
code, they could potentially use the
developer’s intellectual property.

Compiled programs take a shorter time to
execute as translation has already been
completed and the machine code generated may
have been optimised by the compiler.

An interpreted program can take longer
to execute than the same program when
compiled, since each line of the source
code needs to be translated before it is
executed every time the program is run.

Compiled programs have no syntax or semantic
errors.

Interpreted programs may still contain
syntax or semantic errors if any part of
the program has not been fully tested,
these errors will need to be debugged.

The source program can be translated on one
type of computer then executed on another type
of computer.

Interpreted programs cannot be
interpreted on one type of computer and
run on another type of computer.

A compiler finds all errors in a program. One error
detected can mean that the compiler finds other
dependent errors later on in the program that will
not be errors when the first error is corrected.
Therefore, the number of errors found may be more
than the actual number of errors.

It is easier to develop and debug a
program using an interpreter as
errors can be corrected on each line
and the program restarted from that
place, enabling the programmer to
easily learn from any errors.



Untested programs with errors may cause the
computer to crash.

Untested programs should not be able
to cause the computer to crash.

The developer needs to write special routines in
order to view partial results during development,
making it more difficult to assess the quality of
particular sections of code.

Partial results can be viewed during
development, enabling the developer
to make informed decisions about a
section of code, for example whether
to continue, modify, or scrap and start
again.

End users do not have access to the source code
and the run-time libraries, meaning they are unable
to make modifications and are reliant on the
developer for updates and alterations.

If an interpreted program is
purchased, end users have all the
source code and the run-time
libraries, enabling the program to be
modified as required without further
purchase.

Table 5.4 Pros (blue cells) and cons (white cells) of compilers and interpreters.



5.2.3 Partial compiling and interpreting
In order to achieve shorter execution times, many high-level languages programs use a system
that is partially compilation and partially interpretation. The source code is checked and
translated by a compiler into object code. The compiled object code is a low-level machine
independent code, called intermediate code, p-code or bytecode. To execute the program, the
object code can be interpreted by an interpreter or compiled using a compiler.

For example, Java and Python programs can be translated by a compiler into a set of instructions
for a virtual machine. These instructions, called bytecode, are then interpreted by an interpreter.

Below are examples of Java and Python intermediate code (bytecode):



EXTENSION ACTIVITY 5E
Visual Basic also has an interpreter for bytecode. Find an example of bytecode for Visual
Basic. See if you can find the bytecode for displaying ‘Hello World’ on the screen as in the
Python example above.



5.2.4 Integrated development environment (IDE)
An integrated development environment (IDE) is used by programmers to aid the writing and
development of programs. There are many different IDEs available; some just support one
programming language, others can be used for several different programming languages.
NetBeans®, PyCharm®, Visual Studio® and SharpDevelop are all IDEs currently in use.

EXTENSION ACTIVITY 5F
In small groups investigate different IDEs. See how many different features are available for
your group’s IDE and identify which programming language(s) are supported. Compare the
features of the IDE investigated by your group with the IDEs investigated by other groups in
the class.

IDEs usually have
•  a source code editor
•  a compiler, an interpreter, or both
•  a run-time environment with a debugger
•  an auto-documenter.

Source code editor
A source code editor allows a program to be written and edited without the need to use a separate
text editor. The use of an integrated source code editor speeds up the development process, as
editing can be done without changing to a different piece of software each time the program
needs correcting or adding to. Most source code editors colour code the words in the program
and layout the program in a meaningful way (prettyprinting). Some source code editors also
offer context sensitive prompts with text completion for variable names and reserved words, and
provide dynamic syntax checking. Figures 5.12 and 5.13 show these features in the PyCharm
source code editor.



Figure 5.12 PyCharm IDE showing source code editor

Figure 5.13 PyCharm IDE showing dynamic syntax checking

Here, string values are shown coloured green and integer values are shown coloured blue.

Dynamic syntax checking finds possible syntax errors as the program code is being typed in to
the source code editor and alerts the programmer at the time, before the source code is
interpreted. Many errors can therefore be found and corrected during program writing and
editing before the program is run. Logic errors can only be found when the program is run.

For larger programs that have more than one code block, some code blocks can be collapsed to a
single line in the editor allowing the programmer to just see the code blocks that are currently
being developed.

Compilers and interpreters
Most IDEs usually provide a compiler and/or an interpreter to run the program. The interpreter is
often used for developing the program and the compiler to produce the final version of the object
code.



Figure 5.14 PyCharm IDE showing both program code and program run

With PyCharm there can be more than one interpreter available for different versions of the
Python language. The program results are shown using the run-time environment provided.

A run-time environment with a debugger
A debugger is a program that runs the program under development and aids the process of
debugging. It allows the programmer to single step through the program a line at a time (single
stepping) or to set a breakpoint to stop the execution of the program at a certain point in the
source code. A report window then shows the contents of the variables and expressions
evaluated at that point in the program. This allows the programmer to see if there are any logic
errors in the program and check that the program works as intended.

 



Figure 5.15 PyCharm IDE showing the report window after line 2 (page 155) and after line 4 (above)

Each variable used is shown in the report window together with the type and the contents of the
variable at that point in the program. The top variable shown is the last one that was used.

Answers to calculations and other expressions can also be shown.

Figure 5.16 PyCharm IDE showing the report window with the answer to an expression



Auto-documenter
Most IDEs usually provide an auto-documenter to explain the function and purpose of
programming code.

Figure 5.17 PyCharm IDE showing the quick documentation window for print

ACTIVITY 5B
1  a)  i)   Describe the difference between a compiler and an assembler.

ii)  Describe the difference between a compiler and an interpreter.
b)  State two benefits and two drawbacks of using an interpreter.

2   A new program is to be written in a high-level language. The programmer has decided to
use an IDE to develop the new program.
a)  Explain what is meant by an IDE.
b)  Describe three features of an IDE.

End of chapter questions
1  A programmer is writing a program that includes code from a program library.

a)  Describe two benefits to the programmer of using one or more library routines.
[4]

b)  The programmer decides to use a Dynamic Link Library (DLL) file.
i)   Describe two benefits of using DLL files.

[4]
ii)  State one drawback of using DLL files.

[2]



Cambridge International AS & A Level Computer Science 9608 Paper 12 Q8
November 2016

2   a)  The operating system contains code for performing various management tasks. The
appropriate code is run when the user performs actions.
Copy the diagram below and connect each OS management task to the appropriate user
action.

[3]

b)  A user has the following issues with the use of his PC.
State the utility software which should provide a solution.
i)   The hard disk stores a large number of video files. The computer frequently runs out

of storage space.
[1]

ii)  The user is unable to find an important document. He thinks it was deleted in error
some weeks ago. This must not happen again.

[1]
iii) The operating system reports ‘bad sector’ errors.

[1]
iv)  There have been some unexplained images and advertisements appearing on the

screen. The user suspects it is malware.
[1]

Cambridge International AS & A Level Computer Science 9608 Paper 11 Q6 June
2017

3  File History and Time Machine are examples of back-up utilities offered as part of two
different operating systems.
a)  Explain why it is important to back up files on a computer.

[2]
b)  One of the features offered by both utilities is the possibility of ‘turning back the internal



computer clock’.
Explain why this is an important feature and give two occasions when a user may wish
to use this feature.

[4]
c)  By using diagrams and written explanation, describe how defragmentation software

works.
[4]

4  Assemblers, compilers and interpreters are all used to translate programs. Discuss the
different roles played by each translator.

[6]
5  State four features of an IDE that are helpful when coding a program.

[4]


	AS LEVEL
	5 System software
	5.1 Operating systems
	5.2 Language translators



