
4 Processor fundamentals
In this chapter, you will learn about
• the basic Von Neumann model of a computer system
• the purpose and role of the registers PC, MDR, MAR, ACC, IX, CIR, and the status registers
• the purpose and role of the arithmetic logic unit (ALU), control unit (CU), system clock and

immediate access store (IAS)
• functions of the address bus, data bus and control bus
• factors affecting computer performance (such as processor type, bus width, clock speeds,

cache memory and use of core processors)
• the connection of computers to peripheral devices such as Universal Serial Bus (USB), high

definition multimedia interface (HDMI) and Video Graphics Array (VGA)
• the fetch-execute cycle and register transfers
• the purpose of interrupts
• the relationship between assembly language and machine code (such as symbolic, absolute

and relative addressing)
• different stages for a two-pass assembler
• tracing sample assembly language programming code
• assembly language instruction groups (such as data movement, I/O operations, arithmetic

operations, comparisons, and so on)
• addressing modes (immediate, direct, indirect, indexed and relative)
• how to perform binary shifts (including logical, arithmetic, cyclic, left shift and right shift)
• how bit manipulation is used to monitor/control a device.

 4.1 Central processing unit (CPU) architecture
WHAT YOU SHOULD ALREADY KNOW
Try these four questions before you read the first part of this chapter.
1 a) Name the main components that make up a typical computer system.

b) Tablets and smart phones carry out many of the functions of a desktop or laptop
computer. Describe the main differences between the operations of a desktop or laptop
computer and a tablet or phone.

2 When deciding on which computer, tablet or phone to buy, which are the main factors that
determine your final choice?

3 Look at a number of computers, laptops and phones and list (and name) the types of input
and output ports found on each device.

4 At the centre of all of the above electronic devices is the microprocessor. How has the
development of the microprocessor changed over the last ten years?

Key terms
Von Neumann architecture – computer architecture which introduced the concept of the
stored program in the 1940s.

Arithmetic logic unit (ALU) – component in the processor which carries out all arithmetic
and logical operations.

Control unit – ensures synchronisation of data flow and programs throughout the computer by
sending out control signals along the control bus.

System clock – produces timing signals on the control bus to ensure synchronisation takes
place.

Immediate access store (IAS) – holds all data and programs needed to be accessed by the
control unit.

Accumulator – temporary general purpose register which stores numerical values at any part
of a given operation.

Register – temporary component in the processor which can be general or specific in its use
that holds data or instructions as part of the fetch-execute cycle.

Status register – used when an instruction requires some form of arithmetic or logical
processing.

Flag – indicates the status of a bit in the status register, for example, N = 1 indicates the result
of an addition gives a negative value.

Address bus – carries the addresses throughout the computer system.

Data bus – allows data to be carried from processor to memory (and vice versa) or to and from

input/output devices.

Control bus – carries signals from control unit to all other computer components.

Unidirectional – used to describe a bus in which bits can travel in one direction only.

Bidirectional – used to describe a bus in which bits can travel in both directions.

Word – group of bits used by a computer to represent a single unit.

Clock cycle – clock speeds are measured in terms of GHz; this is the vibrational frequency of
the clock which sends out pulses along the control bus – a 3.5 GHZ clock cycle means 3.5
billion clock cycles a second.

Overclocking – changing the clock speed of a system clock to a value higher than the
factory/recommended setting.

BIOS – basic input/output system.

Cache memory – a high speed auxiliary memory which permits high speed data transfer and
retrieval.

Core – a unit made up of ALU, control unit and registers which is part of a CPU. A CPU may
contain a number of cores.

Dual core – a CPU containing two cores.

Quad core – a CPU containing four cores.

Port – external connection to a computer which allows it to communicate with various
peripheral devices. A number of different port technologies exist.

Universal Serial Bus (USB) – a type of port connecting devices to a computer.

Asynchronous serial data transmission – serial refers to a single wire being used to transmit
bits of data one after the other. Asynchronous refers to a sender using its own clock/timer
device rather sharing the same clock/timer with the recipient device.

High-definition multimedia interface (HDMI) – type of port connecting devices to a
computer.

Video Graphics Array (VGA) – type of port connecting devices to a computer.

High-bandwidth digital copy protection (HDCP) – part of HDMI technology which reduces
risk of piracy of software and multimedia.

Fetch-execute cycle – a cycle in which instructions and data are fetched from memory and
then decoded and finally executed.

Program counter (PC) – a register used in a computer to store the address of the instruction
which is currently being executed.

Current instruction register – a register used to contain the instruction which is currently
being executed or decoded.

Register Transfer Notation (RTN) – short hand notation to show movement of data and
instructions in a processor, can be used to represent the operation of the fetch-execute cycle.

Interrupt – signal sent from a device or software to a processor requesting its attention; the

processor suspends all operations until the interrupt has been serviced.

Interrupt priority – all interrupts are given a priority so that the processor knows which need
to be serviced first and which interrupts are to be dealt with quickly.

Interrupt service routine (ISR) or interrupt handler – software which handles interrupt
requests (such as ‘printer out of paper’) and sends the request to the CPU for processing.

4.1.1 Von Neumann model
Early computers were fed data while the machines were running. It was not possible to store
programs or data; that meant they could not operate without considerable human intervention.

In the mid-1940s, John Von Neumann developed the concept of the stored program computer. It
has been the basis of computer architecture for many years. The main, previously unavailable,
features of the Von Neumann architecture were
• a central processing unit (CPU or processor)
• a processor able to access the memory directly
• computer memories that could store programs as well as data
• stored programs made up of instructions that could be executed in sequential order.

Figure 4.1 shows a simple representation of Von Neumann architecture.

Figure 4.1 Representation of Von Neumann architecture

4.1.2 Components of the processor (CPU)
The main components of the processor are the arithmetic logic unit (ALU), the control unit
(CU), the system clock and the immediate access store (IAS).

Arithmetic logic unit (ALU)
The ALU allows the required arithmetic or logic operations to be carried out while a program is
being run. It is possible for a computer to have more than one ALU – one will perform fixed
point operations and the other floating-point operations (see Chapter 13).

Multiplication and division are carried out by a sequence of addition, subtraction and left/right
shifting operations (for example, shifting 0 0 1 1 0 1 1 1 two places to the left gives 1 1 0 1 1 1 0
0, which is equivalent to multiplying by a factor of 4).

The accumulator (ACC) is a temporary register used when carrying out ALU calculations.

Control unit (CU)
The CU reads an instruction from memory (the address of the location where the instruction can
be found is stored in the program counter (PC)). This instruction is then interpreted. During that
process, signals are generated along the control bus to tell the other components in the computer
what to do. The CU ensures synchronisation of data flow and program instructions throughout
the computer.

System clock
A system clock is used to produce timing signals on the control bus to ensure this vital
synchronisation takes place – without the clock the computer would simply crash. (See Section
4.1.4 System buses.)

Immediate access store (IAS)
The IAS holds all the data and programs that the processor (CPU) needs to access. The CPU
takes data and programs held in backing store and puts them into the IAS temporarily. This is
done because read/write operations carried out using the IAS are considerably faster than
read/write operations to backing store. Consequently, any key data needed by an application will
be stored temporarily in IAS to speed up operations. The IAS is another name for primary
(RAM) memory.

4.1.3 Registers
One of the most fundamental components of the Von Neumann system is the register. Registers
can be general purpose or special purpose. General purpose registers hold data that is frequently
used by the CPU or can be used by the programmer when addressing the CPU directly. The
accumulator is a good example of a general purpose register and will be used as such throughout
this book. Special purpose registers have a specific function within the CPU and hold the
program state.

The most common special registers referred to in this book are shown in Table 4.1. The use of
many of these registers is explained more fully in Section 4.1.6 (fetch-execute cycle) and in
Section 4.2 (tracing of assembly code programs).

Register Abbreviation Function/purpose of register

current
instruction
register

CIR stores the current instruction being decoded and executed

index register IX used when carrying out index addressing operations
(assembly code)

memory
address
register

MAR stores the address of the memory location currently being read
from or written to

memory
data/buffer
register

MDR/MBR stores data which has just been read from memory or data
which is about to be written to memory (sometimes referred
to as MBR)

program
counter

PC stores the address where the next instruction to be read can be
found

status register SR contain bits which can be set or cleared depending on the
operation (for example, to indicate overflow in a calculation)

Table 4.1 Common registers

All of the registers listed in Table 4.1 (apart from status and index registers) are used in the fetch-
execute cycle, which is covered later in this chapter.

Index registers are best explained when looking at addressing techniques in assembly code
(again, this is covered later in the chapter).

A status register is used when an instruction requires some form of arithmetic or logic
processing. Each bit is known as a flag. Most systems have the following four flags.
• Carry flag (C) is set to 1 if there is a CARRY following an addition operation (refer to Chapter

1).
• Negative flag (N) is set to 1 if the result of a calculation yields a NEGATIVE value.
• Overflow flag (V) is set to 1 if an arithmetic operation results in an OVERFLOW being

produced.
• Zero flag (Z) is set to 1 if the result of an arithmetic or logic operation is ZERO.

Consider this arithmetic operation:

Since we have two positive numbers being added, the answer should not be negative. The flags
indicate two errors: a negative result, and an overflow occurred.

Now consider this operation:

Since we have two negative numbers being added, the answer should be negative. The flags
indicate that two errors have occurred: a carry has been generated, and a ninth bit overflow has
occurred.

Other flags can be generated, such as a parity flag, an interrupt flag or a half-carry flag.

EXTENSION ACTIVITY 4A
Find out what conditions could cause:
a) a parity flag (P) being set to 1
b) an interrupt flag (I) being set to 1
c) a zero flag (Z) being set to 1
d) a half-carry flag (H) being set to 1.

4.1.4 System buses

Figure 4.2 System buses

(System) buses are used in computers as a parallel transmission component; each wire in the bus
transmits one bit of data. There are three common buses used in the Von Neumann architecture
known as address bus, data bus and control bus.

Address bus
As the name suggests, the address bus carries addresses throughout the computer system.
Between the CPU and memory the address bus is unidirectional (in other words, bits can travel
in one direction only). This prevents addresses being carried back to the CPU, which would be
undesirable.

The width of a bus is important. The wider the bus, the more memory locations which can be
directly addressed at any given time; for example, a bus of width 16 bits can address 216 (65 536)
memory locations, whereas a bus width of 32 bits allows 4 294 967 296 memory locations to be
simultaneously addressed. Even this is not large enough for modern computers, but the
technology behind even wider buses is outside the scope of this book.

Data bus
The data bus is bidirectional (in other words, it allows data to be sent in both directions along
the bus). This means data can be carried from CPU to memory (and vice versa) as well as to and
from input/output devices. It is important to point out that data can be an address, an instruction
or a numerical value. As with the address bus, the width of the data bus is important: the wider
the bus, the larger the word length that can be transported. (A word is a group of bits which can
be regarded as a single unit, for example, 16-bit, 32-bit or 64-bit word lengths are the most
common). Larger word lengths can improve the computer’s overall performance.

Control bus

The control bus is also bidirectional. It carries signals from the CU to all the other computer
components. It is usually 8-bits wide since it only carries control signals.

It is worth mentioning here the role of the system clock. The clock defines the clock cycle which
synchronises all computer operations. As mentioned earlier, the control bus transmits timing
signals, ensuring everything is fully synchronised. By increasing clock speed, the processing
speed of the computer is also increased (a typical current value is 3.5 GHz – which means 3.5
billion clock cycles a second). Although the speed of the computer may have been increased, it is
not possible to say that a computer’s overall performance is necessarily increased by using a
higher clock speed. Four other factors need to be considered.

1 Width of the address bus and data bus can affect computer performance.
2 Overclocking: the clock speed can be changed by accessing the BIOS basic input/output

system (BIOS) and altering the settings. However, using a clock speed higher than the
computer was designed for can lead to problems, such as
– execution of instructions outside design limits, which can lead to seriously unsynchronised

operations (in other words, an instruction is unable to complete in time before the next one
is due to be executed) and the computer would frequently crash and become unstable

– serious overheating of the CPU leading to unreliable performance.

3 The use of cache memory can also improve processor performance. It is similar to RAM in
that its contents are lost when the power is turned off. Cache uses SRAM (see Chapter 3)
whereas most computers use DRAM for main memory. Therefore, cache memories will have
faster access times, since there is no need to keep refreshing, which slows down access time.
When a processor reads memory, it first checks out cache and then moves on to main memory
if the required data is not there. Cache memory stores frequently used instructions and data
that need to be accessed faster. This improves processor performance.

4 The use of a different number of cores (one core is made up of an ALU, a CU and the
registers) can improve computer performance. Many computers are dual core (the CPU is
made up of two cores) or quad core (the CPU is made up of four cores). The idea of using
more cores alleviates the need to continually increase clock speeds. However, doubling the
number of cores does not necessarily double the computer’s performance since we have to
take into account the need for the CPU to communicate with each core; this will reduce overall
performance. For example
– dual core has one channel and needs the CPU to communicate with both cores, reducing

some of the potential increase in its performance
– quad core has six channels and needs the CPU to communicate with all four cores,

considerably reducing potential performance.

Figure 4.3 Two cores, one channel (left) and four cores, six channels (right)

All of these factors need to be taken into account when considering computer performance.

In summary
• increasing bus width (data and address buses) increases the performance and speed of a

computer system
• increasing clock speed usually increases the speed of a computer
• a computer’s performance can be changed by altering bus width, clock speed and use of multi-

core CPUs
• use of cache memories can also speed up a processor’s performance.

4.1.5 Computer ports
Input and output devices are connected to a computer via ports. The interaction of the ports with
connected input and output is controlled by the control unit. Here we will summarise some of the
more common types of ports found on modern computers.

Figure 4.4 (from left to right) USB cable, HDMI cable, VGA cable

USB ports
The Universal Serial Bus (USB) is an asynchronous serial data transmission method. It has
quickly become the standard method for transferring data between a computer and a number of
devices.

The USB cable consists of a four-wired shielded cable, with two wires for power and the earth,
and two wires used for data transmission. When a device is plugged into a computer using one of
the USB ports
• the computer automatically detects that a device is present (this is due to a small change in the

voltage level on the data signal wires in the cable)
• the device is automatically recognised, and the appropriate device driver is loaded up so that

computer and device can communicate effectively
• if a new device is detected, the computer will look for the device driver which matches the

device. If this is not available, the user is prompted to download the appropriate software.

The USB system has become the industry standard, but there are still pros and cons to using this
system, as summarised in Table 4.2.

Pros of USB system Cons of USB system

• devices plugged into the computer are
automatically detected and device drivers are
automatically loaded up

• the connectors can only fit one way, which prevents
incorrect connections being made

• this has become the industry standard, which means
that considerable support is available to users

• several different data transmission rates are
supported

• newer USB standards are backward compatible

• the present transmission rate is
limited to less than 500 megabits
per second

• the maximum cable length is
presently about five metres

• the older USB standard (such as
1.1) may not be supported in the
near future

with older USB standards

Table 4.2 Pros and cons of the USB system

High-definition multimedia interface (HDMI)
High-definition multimedia interface (HDMI) ports allow output (both audio and visual) from
a computer to an HDMI-enabled device. They support high-definition signals (enhanced or
standard). HDMI was introduced as a digital replacement for the older Video Graphics Array
(VGA) analogue system. Modern HD (high definition) televisions have the following features,
which are making VGA a redundant technology:
• They use a widescreen format (16:9 aspect ratio).
• The screens use a greater number of pixels (typically 1920 × 1080).
• The screens have a faster refresh rate (such as 120 Hz or 120 frames a second).
• The range of colours is extremely large (some companies claim up to four million different

colour variations).

This means that modern HD televisions require more data, which has to be received at a much
faster rate than with older televisions (around 10 gigabits per second). HDMI increases the
bandwidth, making it possible to supply the necessary data for high quality sound and visual
effects.

HDMI can also afford some protection against piracy since it uses high-bandwidth digital copy
protection (HDCP). HDCP uses a type of authentication protocol (see Chapters 6 and 17). For
example, a Blu-ray player will check the authentication key of the device it is sending data to
(such as an HD television). If the key can be authenticated, then handshaking takes place and the
Blu-ray can start to transmit data to the connected device.

Video Graphics Array (VGA)
VGA was introduced at the end of the 1980s. VGA supports 640 × 480 pixel resolution on a
television or monitor screen. It can also handle a refresh rate of up to 60 Hz (60 frames a second)
provided there are only 16 different colours being used. If the pixel density is reduced to 200 ×
320, then it can support up to 256 colours.

The technology is analogue and, as mentioned in the previous section, is being phased out.

Table 4.3 summarises the pros and cons of HDMI and VGA.

Pros of HDMI Cons of HDMI

• the current standard for modern
televisions and monitors

• allows for a very fast data transfer rate
• improved security (helps prevent piracy)
• supports modern digital systems

• not a very robust connection (easy to break
connection when simply moving device)

• limited cable length to retain good signal
• there are currently five cable/connection

standards

Pros of VGA Cons of VGA

• simpler technology
• only one standard available
• it is easy to split the signal and connect a

number of devices from one source
• the connection is very secure

• old out-dated analogue technology
• it is easy to bend the pins when making

connections
• the cables must be of a very high grade to

ensure good undistorted signal

Table 4.3 Pros and cons of HDMI and VGA

4.1.6 Fetch-execute cycle
We have already considered the role of buses and registers in the processor. This next section
shows how an instruction is decoded and executed in the fetch-execute cycle using various
components in the processor.

To execute a set of instructions, the processor first fetches data and instructions from memory
and stores them in suitable registers. Both the address bus and data bus are used in this process.
Once this is done, each instruction needs to be decoded before being executed.

Fetch
The next instruction is fetched from the memory address currently stored in the program
counter (PC) and is then stored in the current instruction register (CIR). The PC is then
incremented (increased by 1) so that the next instruction can be processed. This is decoded so
that each instruction can be interpreted in the next part of the cycle.

Execute
The processor passes the decoded instruction as a set of control signals to the appropriate
components within the computer system. This allows each instruction to be carried out in its
logical sequence.

Figure 4.5 shows how the fetch-execute cycle is carried out in the Von Neumann computer
model.

Figure 4.5 How the fetch-execute cycle is carried out in the Von Neumann computer model

When registers are involved, it is possible to describe what is happening by using Register
Transfer Notation (RTN). In its simplest form:

Double brackets are used in the third line because it is not MAR contents being copied into MDR
but it is the data stored at the address shown in MAR that is being copied to MDR.

Compare the above instructions to those shown in Figure 4.5. Inspection should show the register
transfer notation is carrying out the same function.

RTN can be abstract (generic notation – as shown on page 117) or concrete (specific to a
particular machine – example shown below). For example, on a RISC computer:

Use of interrupts in the fetch-execute cycle
Section 4.1.7 gives a general overview of how a computer uses interrupts to allow a computer
to operate efficiently and to allow it, for example, to carry out multi-tasking functions. Just
before we discuss interrupts in this general fashion, the following notes explain how interrupts
are specifically used in the fetch-execute cycle.

A special register called the interrupt register is used in the fetch-execute cycle. While the CPU
is in the middle of carrying out this cycle, an interrupt could occur, which will cause one of the
bits in the interrupt register to change its status. For example, the initial status might be 0000
0000 and a fault might occur while writing data to the hard drive; this would cause the register to
change to 0000 1000. The following sequence now takes place.
• At the next fetch-execute cycle, the interrupt register is checked bit by bit.
• The contents 0000 1000 would indicate an interrupt occurred during a previous cycle and it

still needs servicing. The CPU would now service this interrupt or ignore it for now,
depending on its priority.

• Once the interrupt is serviced by the CPU, it stops its current task and stores the contents of its
registers (see Section 4.1.7 for more details about how this is done).

• Control is now transferred to the interrupt handler (or interrupt service routine, ISR).
• Once the interrupt is fully serviced, the register is reset and the contents of registers are

restored.

Figure 4.6 summarises the interrupt process during the fetch-execute cycle.

Figure 4.6 The interrupt process during the fetch-execute cycle

4.1.7 Interrupts
An interrupt is a signal sent from a device or from software to the processor. This will cause the
processor to temporarily stop what it is doing and service the interrupt. Interrupts can be caused
by, for example
• a timing signal
• input/output processes (a disk drive is ready to receive more data, for example)
• a hardware fault (an error has occurred such as a paper jam in a printer, for example)
• user interaction (the user pressed a key to interrupt the current process, such as <CTRL>

<ALT><BREAK>, for example)
• a software error that cannot be ignored (if an .exe file could not be found to initiate the

execution of a program OR an attempt to divide by zero, for example).

Once the interrupt signal is received, the processor either carries on with what it was doing or
stops to service the device/program that generated the interrupt. The computer needs to identify
the interrupt type and also establish the level of interrupt priority.

Interrupts allow computers to carry out many tasks or to have several windows open at the same
time. An example would be downloading a file from the internet at the same time as listening to
some music from the computer library. Whenever an interrupt is serviced, the status of the
current task being run is saved. The contents of the program counter and other registers are
saved. Then, the interrupt service routine (ISR) is executed by loading the start address into
the program counter. Once the interrupt has been fully serviced, the status of the interrupted task
is reinstated (contents of saved registers retrieved) and it continues from the point prior to the
interrupt being sent.

ACTIVITY 4a
1 a) Describe the functions of the following registers.

i) Current instruction register
ii) Memory address register
iii) Program counter

b) Status registers contain flags. Three such flags are named N, C and V.
i) What does each of the three flags represent?
ii) Give an example of the use of each of the three flags.

2 a) Name three buses used in the Von Neumann architecture.
b) Describe the function of each named bus.
c) Describe how bus width and clock speed can affect computer performance.

3 Copy the diagram below and connect each feature to the correct port, HDMI or VGA.

4 a) What is meant by the fetch-execute cycle?
b) Using register transfer notation, show the main stages in a typical fetch-execute cycle.

5 Copy and complete this paragraph by using terms from this chapter.

The processor_______________data and instructions required for an application and
temporarily stores them in the_______________until they can be processed.

The_______________is used to hold the address of the next instruction to be executed. This
address is copied to the_______________using the_______________.

The contents at this address are stored in the_______________.

Each instruction is then_______________and finally_______________sending
out_______________using the_______________. Any calculations carried out are done
using the_______________. During any calculations, data is temporarily held in a special
register known as the_______________.

 4.2 Assembly language
WHAT YOU SHOULD ALREADY KNOW
Try these three questions before you start the second part of this chapter.
1 a) Name two types of low-level programming language.

b) Name the only type of programming language that a CPU recognises.
c) Why do programmers find writing in this type of programming language difficult?

2 Find at least two different types of CPU and the language they use.
3 Look at your computer and/or laptop and/or phone and list the programming language(s)

they use.

Key terms
Machine code – the programming language that the CPU uses.

Instruction – a single operation performed by a CPU.

Assembly language – a low-level chip/machine specific programming language that uses
mnemonics.

Opcode – short for operation code, the part of a machine code instruction that identifies the
action the CPU will perform.

Operand – the part of a machine code instruction that identifies the data to be used by the
CPU.

Source code – a computer program before translation into machine code.

Assembler – a computer program that translates programming code written in assembly
language into machine code. Assemblers can be one pass or two pass.

Instruction set – the complete set of machine code instructions used by a CPU.

Object code – a computer program after translation into machine code.

Addressing modes – different methods of using the operand part of a machine code instruction
as a memory address.

Absolute addressing – mode of addressing in which the contents of the memory location in
the operand are used.

Direct addressing – mode of addressing in which the contents of the memory location in the
operand are used, which is the same as absolute addressing.

Indirect addressing – mode of addressing in which the contents of the contents of the memory
location in the operand are used.

Indexed addressing – mode of addressing in which the contents of the memory location found
by adding the contents of the index register (IR) to the address of the memory location in the

operand are used.

Immediate addressing – mode of addressing in which the value of the operand only is used.

Relative addressing – mode of addressing in which the memory address used is the current
memory address added to the operand.

Symbolic addressing – mode of addressing used in assembly language programming, where a
label is used instead of a value.

4.2.1 Assembly language and machine code
The only programming language that a CPU can use is machine code. Every different type of
computer/chip has its own set of machine code instructions. A computer program stored in main
memory is a series of machine code instructions that the CPU can automatically carry out during
the fetch-execute cycle. Each machine code instruction performs one simple task, for example,
storing a value in a memory location at a specified address. Machine code is binary, it is
sometimes displayed on a screen as hexadecimal so that human programmers can understand
machine code instructions more easily.

Writing programs in machine code is a specialised task that is very time consuming and often
error prone, as the only way to test a program written in machine code is to run it and see what
happens. In order to shorten the development time for writing computer programs, other
programming languages were developed, where the instructions were easier to learn and
understand. Any program not written in machine code needs to be translated before the CPU can
carry out the instructions, so language translators were developed.

The first programming language to be developed was assembly language, this is closely related
to machine code and uses mnemonics instead of binary.

LDD Total 0140 00000000110000000
ADD 20 0214 00000001000011000
STO Total 0340 00000001110000000
Assembly language mnemonics Machine code hexadecimal Machine code binary

The structure of assembly language and machine code instructions is the same. Each instruction
has an opcode that identifies the operation to be carried out by the CPU. Most instructions also
have an operand that identifies the data to be used by the opcode.

4.2.2 Stages of assembly
Before a program written in assembly language (source code) can be executed, it needs to be
translated into machine code. The translation is performed by a program called an assembler. An
assembler translates each assembly language instruction into a machine code instruction. An
assembler also checks the syntax of the assembly language program to ensure that only opcodes
from the appropriate machine code instruction set are used. This speeds up the development
time, as some errors are identified during translation before the program is executed.

There are two types of assembler: single pass assemblers and two pass assemblers. A single pass
assembler puts the machine code instructions straight into the computer memory to be executed.
A two pass assembler produces an object program in machine code that can be stored, loaded
then executed at a later stage. This requires the use of another program called a loader. Two pass
assemblers need to scan the source program twice, so they can replace labels in the assembly
program with memory addresses in the machine code program.

Pass 1
• Read the assembly language program one line at a time.
• Ignore anything not required, such as comments.
• Allocate a memory address for the line of code.
• Check the opcode is in the instruction set.
• Add any new labels to the symbol table with the address, if known.
• Place address of labelled instruction in the symbol table.

Pass 2
• Read the assembly language program one line at a time.
• Generate object code, including opcode and operand, from the symbol table generated in Pass

1.
• Save or execute the program.

The second pass is required as some labels may be referred to before their address is known. For
example, Found is a forward reference for the JPN instruction.

Label Opcode Operand
Notfound: LDD 200
 CMP #0
 JPN Found
 JPE Notfound
Found: OUT

If the program is to be loaded at memory address 100, and each memory location contains 16
bits, the symbol table for this small section of program would look like this:

Label Address
Notfound 100
Found 104

4.2.3 Assembly language instructions
There are different types of assembly language instructions. Examples of each type are given
below.

Data movement instructions
These instructions allow data stored at one location to be copied into the accumulator. This data
can then be stored at another location, used in a calculation, used for a comparison or output.

Instruction Explanation

Opcode Operand

LDM #n Load the number into ACC (immediate addressing is used)

LDD <address> Load the contents of the specified address into ACC (direct or absolute
addressing is used)

LDI <address> The address to be used is the contents of the specified address. Load the
contents of the contents of the given address into ACC (indirect
addressing is used)

LDX <address> The address to be used is the specified address plus the contents of the
index register. Load the contents of this calculated address into ACC
(indexed addressing is used)

LDR #n Load the number n into IX (immediate addressing is used)

LDR ACC Load the number in the accumulator into IX

MOV <register> Move the contents of the accumulator to the register (IX)

STO <address> Store the contents of ACC into the specified address (direct or absolute
addressing is used)

END Return control to the operating system

ACC is the single accumulator
IX is the Index Register
All numbers are denary unless identified as binary or hexadecimal
B is a binary number, for example B01000011
& is a hexadecimal number, for example &7B
is a denary number

Table 4.4 Data movement instructions

Input and output of data instructions
These instructions allow data to be read from the keyboard or output to the screen.

Instruction Explanation

Opcode Operand

IN Key in a character and store its ASCII value in ACC

OUT Output to the screen the character whose ASCII value is stored in ACC

No opcode is required as a single character is either input to the accumulator or output from
the accumulator

Table 4.5 Input and output of data instructions

Arithmetic operation instructions
These instructions perform simple calculations on data stored in the accumulator and store the
answer in the accumulator, overwriting the original data.

Instruction Explanation

Opcode Operand

ADD <address> Add the contents of the specified address to the ACC (direct or absolute
addressing is used)

ADD #n Add the denary number n to the ACC

SUB <address> Subtract the contents of the specified address from the ACC

SUB #n Subtract the number n from the ACC

INC <register> Add 1 to the contents of the register (ACC or IX)

DEC <register> Subtract 1 from the contents of the register (ACC or IX)

Answers to calculations are always stored in the accumulator

Table 4.6 Arithmetic operation instructions

Unconditional and conditional instructions

Instruction Explanation

Opcode Operand

JMP <address> Jump to the specified address

JPE <address> Following a compare instruction, jump to the specified address if the
comparison is True

JPN <address> Following a compare instruction, jump to the specified address if the
comparison is False

END Returns control to the operating system

Jump means change the PC to the address specified, so the next instruction to be executed is
the one stored at the specified address, not the one stored at the next location in memory

Table 4.7 Unconditional and conditional instructions

Compare instructions

Instruction Explanation

Opcode Operand

CMP <address> Compare the contents of ACC with the contents of the specified address
(direct or absolute addressing is used)

CMP #n Compare the contents of ACC with the number n

CMI <address> The address to be used is the contents of the specified address; compare
the contents of the contents of the given address with ACC (indirect
addressing is used)

The contents of the accumulator are always compared

Table 4.8 Compare instructions

4.2.4 Addressing modes
Assembly language and machine code programs use different addressing modes depending on
the requirements of the program.

Absolute addressing – the contents of the memory location in the operand are used. For
example, if the memory location with address 200 contained the value 20, the assembly language
instruction LDD 200 would store 20 in the accumulator.

Direct addressing – the contents of the memory location in the operand are used. For example,
if the memory location with address 200 contained the value 20, the assembly language
instruction LDD 200 would store 20 in the accumulator. Absolute and direct addressing are the
same.

Indirect addressing – the contents of the contents of the memory location in the operand are
used. For example, if the memory location with address 200 contained the value 20 and the
memory location with address 20 contained the value 5, the assembly language instruction LDI
200 would store 5 in the accumulator.

Indexed addressing – the contents of the memory location found by adding the contents of the
index register (IR) to the address of the memory location in the operand are used. For example, if
IR contained the value 4 and memory location with address 204 contained the value 17, the
assembly language instruction LDX 200 would store 17 in the accumulator.

Immediate addressing – the value of the operand only is used. For example, the assembly
language instruction LDM #200 would store 200 in the accumulator.

Relative addressing – the memory address used is the current memory address added to the
operand. For example, JMR #5 would transfer control to the instruction 5 locations after the
current instruction.

Symbolic addressing – only used in assembly language programming. A label is used instead of
a value. For example, if the memory location with address labelled MyStore contained the value
20, the assembly language instruction LDD MyStore would store 20 in the accumulator.

Labels make it easier to alter assembly language programs because when absolute addresses are
used every reference to that address needs to be edited if an extra instruction is added, for
example.

Label Instruction Explanation

Opcode Operand

<label>: <opcode> <operand> Labels an instruction

<label>: n Gives a symbolic address <label> to the memory location
with the contents n

Table 4.9 Labels

4.2.5 Simple assembly language programs
A program written in assembly language will need many more instructions than a program
written in a high-level language to perform the same task.

In a high-level language, adding three numbers together and storing the answer would typically
be written as a single instruction:

total = first + second + third

The same task written in assembly language could look like this:

Label Opcode Operand
start: LDD first
 ADD second
 ADD third
 STO total
 END

first: #20
second: #30
third: #40
total: #0

If the program is to be loaded at memory address 100 after translation and each memory location
contains 16 bits, the symbol table for this small section of program would look like this:

Label Address

start 100

first 106

second 107

third 108

total 109

When this section of code is executed, the contents of ACC, CIR and the variables used can be
traced using a trace table.

In a high-level language, adding a list of numbers together and storing the answer would
typically be written using a loop.

The same task written in assembly language would require the use of the index register (IX). The
assembly language program could look like this:

If the program is to be loaded at memory address 100 after translation and each memory location
contains 16 bits, the symbol table for this small section of program would look like this:

Label Address

loop 104

number 115

counter 118

total 119

When this section of code is executed the contents of ACC, CIR, IX and the variables used can
be traced using a trace table:

ACTIVITY 4B
1 a) State the contents of the accumulator after the following instructions have been executed.

The memory location with address 200 contains 300, the memory location with address
300 contains 50.

i) LDM #200
ii) LDD 200
iii) LDI 200

b) Write an assembly language instruction to:
i) compare the accumulator with 5
ii) jump to address 100 if the comparison is true.

2 a) Copy and complete the symbol table for this assembly language program. Assume that
the translated program will start at memory address 100.

b) Complete a trace table to show the execution of this assembly language program.
c) State the task that this assembly language program performs.

Label Opcode Operand
 LDD number1
 SUB number2
 ADD number3
 CMP #10
 JPE nomore
 ADD number4

nomore: STO total
 END

number1: #30
number2: #40
number3: #20
number4: #50

total: #0

3 a) Using the assembly language instructions given in this section, write an assembly
language program to output the ASCII value of each element of an array of four
elements.

b) Complete the symbol table for your assembly language program. Assume that the
translated program will start at memory address 100.

c) Complete a trace table to show the execution of your assembly language program.

4.3 Bit manipulation
WHAT YOU SHOULD ALREADY KNOW
Try these two questions before you start the third part of this chapter.
1) Copy and complete the truth table for AND, OR and XOR.

2) Identify three different types of shift used in computer programming.

Key terms
Shift – moving the bits stored in a register a given number of places within the register; there
are different types of shift.

Logical shift – bits shifted out of the register are replaced with zeros.

Arithmetic shift – the sign of the number is preserved.

Cyclic shift – no bits are lost, bits shifted out of one end of the register are introduced at the
other end of the register.

Left shift – bits are shifted to the left.

Right shift – bits are shifted to the right.

Monitor – to automatically take readings from a device.

Control – to automatically take readings from a device, then use the data from those readings
to adjust the device.

Mask – a number that is used with the logical operators AND, OR or XOR to identify, remove
or set a single bit or group of bits in an address or register.

4.3.1 Binary shifts
A shift involves moving the bits stored in a register a given number of places within the register.
Each bit within the register may be used for a different purpose. For example, in the IR each bit
identifies a different interrupt.

There are several different types of shift.

Logical shift – bits shifted out of the register are replaced with zeros. For example, an 8-bit
register containing the binary value 10101111 shifted left logically three places would become
01111000.

Arithmetic shift – the sign of the number is preserved. For example, an 8-bit register containing
the binary value 10101111 shifted right arithmetically three places would become 11110101.
Arithmetic shifts can be used for multiplication or division by powers of two.

Cyclic shift – no bits are lost during a shift. Bits shifted out of one end of the register are
introduced at the other end of the register. For example, an 8-bit register containing the binary
value 10101111 shifted left cyclically three places would become 01111101.

Left shift – bits are shifted to the left; gives the direction of shift for logical, arithmetic and
cyclic shifts.

Right shift – bits are shifted to the right; gives the direction of shift for logical, arithmetic and
cyclic shifts.

Table 4.10 shows the logical shifts that you are expected to use in assembly language
programming.

Instruction Explanation

Opcode Operand

LSL n Bits in ACC are shifted logically n places to the left. Zeros are
introduced on the right-hand end

LSR n Bits in ACC are shifted logically n places to the right. Zeros are
introduced on the left-hand end

Shifts are always performed on the ACC

Table 4.10 Logical shifts in assembly language programming

4.3.2 Bit manipulation used in monitoring and control
In monitoring and control, each bit in a register or memory location can be used as a flag and
would need to be tested, set or cleared separately.

For example, a control system with eight different sensors would need to record when the data
from each sensor had been processed. This could be shown using 8 different bits in the same
memory location.
• AND is used to check if the bit has been set.
• OR is used to set the bit.
• XOR is used to clear a bit that has been set.

Table 4.11 shows the instructions used to check, set and clear a single bit or group of bits.

Instruction Explanation

Opcode Operand

AND n Bitwise AND operation of the contents of ACC with the operand

AND <address> Bitwise AND operation of the contents of ACC with the contents of
<address>

XOR n Bitwise XOR operation of the contents of ACC with the operand

XOR <address> Bitwise XOR operation of the contents of ACC with the contents of
<address>

OR n Bitwise OR operation of the contents of ACC with the operand

OR <address> Bitwise OR operation of the contents of ACC with the contents of
<address>

The results of logical bit manipulation are always stored in the ACC. <address> can be an
absolute address or a symbolic address. The operand is used as the mask to set or clear bits

Table 4.11 Instructions used to check, set and clear a single bit or group of bits

The assembly language code to test sensor 3 could be:

Opcode Operand Comment
LDD sensors Load content of sensors into ACC
AND #B100 Mask to select bit 3 only
CMP #B100 Check if bit 3 is set
JPN process Jump to process routine if bit not set
LDD sensors Load sensors into ACC
XOR #B100 Clear bit 3 as sensor 3 has been processed

ACTIVITY 4C
1 a) State the contents of the accumulator after the following instructions have been executed.

The accumulator contains B00011001.
i) LSL #4
ii) LSR #5

b) Write an assembly language instruction to:
i) set bit 4 in the accumulator
ii) clear bit 1 in the accumulator.

2 a) Describe the difference between arithmetic shifts and logical shifts.
b) Explain, with the aid of examples, how a cyclic shift works.
c) This register is shown before and after it has been shifted. Identify the type of shift that

has taken place.

End of chapter questions
1 a) Write these six stages of the Von Neumann fetch-execute cycle in the correct order.

[6]
 – instruction is copied from the MDR and is placed in the CIR
 – the instruction is executed
 – the instruction is decoded
 – the address contained in PC is copied to the MAR
 – the value in PC is incremented by 1
 – instruction is copied from memory location in MAR and placed in MDR

b) Explain how the following affect the performance of a computer system.
i) Width of the data bus and address bus.

[2]
ii) The clock speed.

[2]
iii) Use of dual core or quad core processors.

[2]
c) A student accessed the BIOS on their computer. They increased the clock speed from 2.5

GHz to 3.2 GHz.
Explain the potential dangers in doing this.

[2]
2 a) Explain the main differences between HDMI, VGA and USB ports when sending data to

peripherals.

[5]
b) Describe how interrupts can be used to service a printer printing out a large 1000 page

document.
[5]

3 a) i) Name three special registers used in a typical processor.
[3]

ii) Explain the purpose of the three registers named in part i).
[3]

b) Explain how interrupts are used when a processor sends a document to a printer.
[4]

4 A programmer is writing a program in assembly language. They need to use shift
instructions.
Describe, using examples, three types of shift instructions the programmer could use.

[6]
5 An intruder detection system for a large house has four sensors. An 8-bit memory location

stores the output from each sensor in its own bit position.
The bit value for each sensor shows:
– 1 – the sensor has been triggered
– 0 – the sensor has not been triggered

The bit positions are used as follows:

The output from the intruder detection system is a loud alarm.
a) i) State the name of the type of system to which intruder detection systems belong.

[1]
ii) Justify your answer to part i).

[1]
b) Name two sensors that could be used in this intruder detection system.

Give a reason for your choice.
[4]

c) The intruder system is set up so that the alarm will only sound if two or more sensors
have been triggered. An assembly language program has been written to process the
contents of the memory location.
This table shows part of the instruction set for the processor used.

Instruction Explanation

Opcode Operand

LDD <address> Direct addressing. Load the contents of the given address to
ACC

STO <address> Store the contents of ACC at the given address

INC <register> Add 1 to the contents of the register (ACC or IX)

ADD <address> Add the contents of the given address to the contents of ACC

AND <address> Bitwise AND operation of the contents of ACC with the
contents of <address>

CMP #n Compare the contents of ACC with the number n

JMP <address> Jump to the given address

JPE <address> Following a compare instruction, jump to <address> if the
compare was True

JGT <address> Following a compare instruction, jump to <address> if the
content of ACC is greater than the number used in the compare
instruction

END End the program and return to the operating system

Part of the assembly code is:

 Opcode Operand

SENSORS: B00001010

COUNT: 0

VALUE: 1

LOOP: LDD SENSORS

 AND VALUE

 CMP #0

 JPE ZERO

 LDD COUNT

 INC ACC

 STO COUNT

ZERO: LDD VALUE

 CMP #8

 JPE EXIT

 ADD VALUE

 STO VALUE

 JMP LOOP

EXIT: LDD COUNT

TEST: CMP …

 JGT ALARM

i) Copy the table below and dry run the assembly language code.
Start at LOOP and finish when EXIT is reached.

[4]

ii) The operand for the instruction labelled TEST is missing.
State the missing operand.

[1]
iii) The intruder detection system is improved and now has eight sensors. One

instruction in the assembly language code will need to be amended.
Identify this instruction. Write the amended instruction.

[2]

Cambridge International AS & A Level Computer Science 9608 Paper 32 Q6 June
2016

	AS LEVEL
	4 Processor fundamentals
	4.1 Central processing unit (CPU) architecture
	4.2 Assembly language
	4.3 Bit manipulation

