
12 Software development
In this chapter, you will learn about
• the purpose, types and stages of the program development lifecycle
• how to document program design using structure charts and state-transition diagrams
• avoiding syntax, logic and run-time errors in programs
• different methods of testing programs to identify and correct such errors
• the types of maintenance used as part of the program development lifecycle.

 12.1 Program development lifecycle
WHAT YOU SHOULD ALREADY KNOW
You may have studied or heard about the systems (or program) development lifecycle.

Try this activity before you read the first part of this chapter. A program development lifecycle
goes through the same stages for a program.

Name and describe the stages of the program/ systems development lifecycle. There are

different development lifecycles used depending upon the system and the type of program
being developed. Identify at least four of these. Work in small groups to research one of these
and share your findings with the other groups.

Key terms
Program development lifecycle – the process of developing a program set out in five stages:
analysis, design, coding, testing and maintenance.

Analysis – part of the program development lifecycle; a process of investigation, leading to the
specification of what a program is required to do.

Design – part of the program development lifecycle; it uses the program specification from the
analysis stage to show how the program should be developed.

Coding – part of the program development lifecycle; the writing of the program or suite of
programs.

Testing – part of the program development lifecycle; the testing of the program to make sure
that it works under all conditions.

Maintenance – part of the program development lifecycle; the process of making sure that the
program continues to work during use.

Waterfall model – a linear sequential program development cycle, in which each stage is
completed before the next is begun.

Iterative model – a type of program development cycle in which a simple subset of the
requirements is developed, then expanded or enhanced, with the development cycle being
repeated until the full system has been developed.

Rapid application development (RAD) – a type of program development cycle in which
different parts of the requirements are developed in parallel, using prototyping to provide early
user involvement in testing.

12.1.1 The purpose of a program development lifecycle
In order to develop a successful program or suite of programs that is going to be used by others
to perform a specific task or solve a given problem, the development needs to be well ordered
and clearly documented, so that it can be understood and used by other developers.

This chapter introduces the formal stages of software (program) development that are set out in
the program development lifecycle.

A program that has been developed may require alterations at any time in order to deal with new
circumstances or new errors that have been found, so the stages are referred to as a lifecycle as
this continues until the program is no longer used.

12.1.2 Stages in the program development lifecycle
The stages of development in the program development lifecycle are shown in this chapter. The
coding, testing and maintenance stages are looked at in depth and include appropriate tools and
techniques to be used at each stage. Therefore, practical activities will be suggested for these
stages to help reinforce the skills being learnt.

Here is a brief overview of the program development lifecycle, divided into the five stages, as
shown in Figure 12.1.

Figure 12.1 The program development lifecyle

Analysis
Before any problem can be solved, it needs to be clearly defined and set out so everyone working
on the solution understands what is needed. This is called the requirements specification. The
analysis stage often starts with a feasibility study, followed by investigation and fact finding to
identify exactly what is required from the program.

Design
The program specification from the analysis stage is used to show how the program should be
developed. When the design stage is complete, the programmer should know what is to be done,
all the tasks that need to be completed, how each task is to be performed and how the tasks work
together. This can be formally documented using structure charts, state-transition diagrams and
pseudocode.

Coding
The program or set of programs is written using a suitable programming language.

Testing

The program is run many times with different sets of test data, to test that it does everything it is
supposed to do in the way set out in the program design.

Maintenance
The program is maintained throughout its life, to ensure it continues to work effectively. This
involves dealing with any problems that arise during use, including correcting any errors that
come to light, improving the functionality of the program, or adapting the program to meet new
requirements.

12.1.3 Different development lifecycles
Each program development methodology has its own strength. Different models have been
developed based on the lifecycle for developers to use in practice. The models we will consider
will be divided into the five stages set out above: analysis, design, coding, testing and
maintenance.

In this section of the chapter, we will look at three models: The waterfall model, the iterative
model, and rapid application development (RAD).

The waterfall model

Figure 12.2 The waterfall model

This linear sequential development cycle is one of the earliest models used, where each stage is
completed and signed off before the next stage is begun. This model is suitable for smaller
projects with a short timescale, for which the requirements are well known and unlikely to
change.

Principles linear, as each stage is completed before the next is begun

well documented as full documentation is completed at every stage

low customer involvement; only involved at the start and end of the process

Benefits easy to manage, understand and use

stages do not overlap and are completed one at a time

each stage has specific deliverables

works well for smaller programs where requirements are known and understood

Drawbacks difficult to change the requirements at a later stage

not suitable for programs where the requirements could be subject to change

working program is produced late in the lifecycle

not suitable for long, complex projects

Table 12.1 Principles, benefits and drawbacks to the waterfall model

The iterative model

Figure 12.3 The iterative model

This development cycle first develops a simple subset of the requirements, then expands or
enhances the model and runs the development cycle again. These program development cycles
are repeated until the full system has been developed. This model is suitable for projects for
which the major requirements are known but some details are likely to change or evolve with
time.

Principles incremental development as the program development lifecycle is repeated

working programs are produced for part of the system at every iteration

high customer involvement, as part of the system can be shown to the customer
after every iteration

Benefits some working programs developed quickly at an early stage in the lifecycle

easier to test and debug smaller programs

more flexible as easier to alter requirements

customers involved at each iteration therefore no surprises when final system
delivered

Drawbacks whole system needs to be defined at start, so it can be broken down into pieces
to be developed at each iteration

needs good planning overall and for every stage

not suitable for short simple projects

Table 12.2 Principles, benefits and drawbacks to the iterative model

Rapid application development (RAD)

Figure 12.4 Rapid application development (RAD)

This development cycle develops different parts of the requirements in parallel, using
prototyping to provide early user involvement in testing. Program development cycles are run in
parallel for each part of the requirement, using a number of different teams. Prototyping is often
used to show initial versions to customers to obtain early feedback. This model is suitable for
complicated projects that need developing in a short timeframe to meet the evolving needs of a
business.

Principles minimal planning

reuses previously written code where possible, makes use of automated code
generation where possible

high customer involvement, as customers can use the prototypes during
development

Benefits reduced overall development time

rapid frequent customer feedback informs the development

very flexible as requirements evolve from feedback during development

as parts of the system are developed side by side, modification is easier because
each part must work independently

Drawbacks system under development needs to be modular

needs strong teams of skilled developers

not suitable for short simple projects

Table 12.3 Principles, benefits and drawbacks to rapid application development (RAD)

EXTENSION ACTIVITY 12A
Find out about four more program development methodologies.

12.2 Program design
WHAT YOU SHOULD ALREADY KNOW
In this chapter, you will need to be able to write more complicated pseudocode, as described by
a structure chart. It is essential that you consolidate your knowledge before you attempt to do
this.

Make sure that you have read and understood Chapter 11 and you are able to write pseudocode
that passes parameters to procedures and functions.

Key terms
Structure chart – a modelling tool used to decompose a problem into a set of sub-tasks. It
shows the hierarchy or structure of the different modules and how they connect and interact
with each other.

Finite state machine (FSM) – a mathematical model of a machine that can be in one state of a
fixed set of possible states; one state is changed to another by an external input; this is known
as a transition.

State-transition diagram – a diagram showing the behaviour of a finite state machine (FSM).

State-transition table – a table showing every state of a finite state machine (FSM), each
possible input and the state after the input.

12.2.1 Purpose and use of structure charts
A structure chart is a modelling tool used in program design to decompose a problem into a set
of sub-tasks. The structure chart shows the hierarchy or structure of the different modules and
how they connect and interact with each other. Each module is represented by a box and the
parameters passed to and from the modules are shown by arrows pointing towards the module
receiving the parameter. Each level of the structure chart is a refinement of the level above.

Figure 12.5 shows a structure chart for converting a temperature from Fahrenheit to Celsius. The
top level shows the name for the whole task that is refined into three sub-tasks or modules shown
on the next level.

Figure 12.5 A structure chart for converting a temperature from Fahrenheit to Celsius

ACTIVITY 12A
Draw a structure chart to input the height and width of a right-angled triangle, calculate output
and output the length of the hypotenuse.

Structure charts can also show selection. The temperature conversion task above could be
extended to either convert from Fahrenheit to Celsius or Celsius to Fahrenheit using the diamond
shaped box to show a condition that could be true or false, as shown in Figure 12.6.

Figure 12.6

ACTIVITY 12B
Draw a structure chart to input the radius of a sphere, calculate output and output either the
volume or the surface area.

Structure charts can also show repetition. The temperature conversion task above could be
extended to repeat the conversion until the number 999 is input. The repetition is shown by
adding a labelled semi-circular arrow above the modules to be completed (Figure 12.7).

Figure 12.7

Once a structure chart has been completed, it can be used to derive a pseudocode algorithm.

ACTIVITY 12C
Amend your structure chart to input the radius of a sphere, calculate and output either the
volume or the surface area. The algorithm should repeat until a radius of zero is entered.

Figure 12.8 shows a possible structure chart for Activity 12C.

Figure 12.8

To derive the pseudo code first, you will need to create an identifier table.

Identifier name Description

radius Stores radius input

answer Stores result of calculation

pi Constant set to 3.142

Table 12.4

Then declare constants and variables in pseudocode. You can identify two of the variables

required from the parameters shown in the structure diagram.

DECLARE radius : REAL

DECLARE answer : REAL
CONSTANT pi ← 3.142

Provide pseudocode for the modules shown in the structure diagram. As Calculate volume and
Calculate surface area provide the answer to a calculation, these can be defined as functions.

The input and output modules could be defined as procedures.

The pseudocode for the whole algorithm, including the selection and repetition, would be as
follows.

ACTIVITY 12D

Draw a structure chart to extend the temperature conversion algorithm to both convert from
Fahrenheit to Celsius and Celsius to Fahrenheit, and repeat until a temperature of 999 is input.

Use your structure chart to create an identifier table and write the pseudocode for this
algorithm.

12.2.2 Purpose and use of state-transition diagrams to
document algorithms
A finite state machine (FSM) is a mathematical model of a machine that can be in one of a
fixed set of possible states. One state is changed to another by an external input, this is called a
transition. A diagram showing the behaviour of an FSM is called a state-transition diagram.

State-transition diagrams show the conditions needed for an event or events that will cause a
transition to occur, and the outputs or actions carried out as the result of that transition.

State-transition diagrams can be constructed as follows:
• States are represented as nodes (circles).
• Transitions are represented as interconnecting arrows.
• Events are represented as labels on the arrows.
• Conditions can be specified in square brackets after the event label.
• The initial state is indicated by an arrow with a black dot.
• A stopped state is indicated by a double circle.

The algorithm for unlocking a door using a three-digit entry code can be represented by a state-
transition diagram. If the door is unlocked with a three-digit entry code, the lock can be in four
states
• locked and waiting for the input of the first digit
• waiting for the input of the second digit
• waiting for the input of the third digit
• unlocked.

If an incorrect digit is input, then the door returns to the locked state. The algorithm halts when
the door is unlocked. A state-transition table shows every state, each possible input and the
state after the input. The state-transition table for a door with the entry code 259 is shown below.

Current state Event Next state

locked 2 input waiting for input of 2nd digit

locked not 2 input locked

waiting for input of 2nd digit 5 input waiting for input of 3rd digit

waiting for input of 2nd digit not 5 input locked

waiting for input of 3rd digit 9 input unlocked and stopped

waiting for input of 3rd digit not 9 input locked

Table 12.5 The state-transition table for a door with the entry code 259

The state-transition diagram for a door with the entry code 259 is shown in Figure 12.9.

Figure 12.9 State-transition diagram for a door with the entry code 259

ACTIVITY 12E
Draw a state-transition diagram for the operation of a television with a single on/off button.
The television can be in three states: on, off and standby. If the button is pressed once (single
press) in standby or off, the television switches on; if the button is pressed once (single press)
when the television is on, the television goes to standby; if the button is pressed twice (double
press) when the television is on, the television goes to off. Double presses in standby or off are
ignored.

Copy and complete the state-transition table and draw the state-transition diagram for the
television operation.

Current state Event Next state

Off Single press

Off Double press

Standby Single press

Standby Double press

On Single press

On Double press

12.3 Program testing and maintenance
WHAT YOU SHOULD ALREADY KNOW
You will need to be able to know how to thoroughly test any programs that you write. Have a
go at the activity below.

Take a program that you have written recently and explain to another student how you tested
the program and which data sets you chose for your testing.

Key terms
Trace table – a table showing the process of dry-running a program with columns showing the
values of each variable as it changes.

Run-time error – an error found in a program when it is executed; the program may halt
unexpectedly.

Test strategy – an overview of the testing required to meet the requirements specified for a
particular program; it shows how and when the program is to be tested.

Test plan – a detailed list showing all the stages of testing and every test that will be
performed for a particular program.

Dry run – a method of testing a program that involves working through a program or module
from a program manually.

Walkthrough – a method of testing a program. A formal version of a dry run using pre-
defined test cases.

Normal test data – test data that should be accepted by a program.

Abnormal test data – test data that should be rejected by a program.

Extreme test data – test data that is on the limit of that accepted by a program.

Boundary test data – test data that is on the limit of that accepted by a program or data that is
just outside the limit of that rejected by a program.

White-box testing – a method of testing a program that tests the structure and logic of every
path through a program module.

Black-box testing – a method of testing a program that tests a module’s inputs and outputs.

Integration testing – a method of testing a program that tests combinations of program
modules that work together.

Stub testing – the use of dummy modules for testing purposes.

Alpha testing – the testing of a completed or nearly completed program in-house by the
development team.

Beta testing – the testing of a completed program by a small group of users before it is

released.

Acceptance testing – the testing of a completed program to prove to the customer that it works
as required.

Corrective maintenance – the correction of any errors that appear during use.

Perfective maintenance – the process of making improvements to the performance of a
program.

Adaptive maintenance – the alteration of a program to perform new tasks.

12.3.1 Ways of avoiding and exposing faults in
programs
Most programs written to perform a real task will contain errors, as programmers are human and
do make mistakes. The aim is to avoid making as many mistakes as possible and then find as
many mistakes as possible before the program goes live. Unfortunately, this does not always
happen and many spectacular failures have occurred. More than one large bank has found that its
customers were locked out of their accounts for some time when new software was installed.
Major airlines have had to cancel flights because of programming errors. One prison service
released prisoners many days earlier than required for about 15 years because of a faulty
program.

Faults in an executable program are frequently faults in the design of the program. Fault
avoidance starts with the provision of a comprehensive and rigorous program specification at the
end of the analysis phase of the program development lifecycle, followed by the use of formal
methods such as structure charts, state-transition diagrams and pseudocode at the design stage.
At the coding stage, the use of programming disciplines such as information hiding,
encapsulation and exception handling, as described in Chapter 20, all help to prevent faults.

Faults or bugs in a program are then exposed at the testing stage. Testing will show the presence
of faults to be corrected, but cannot guarantee that large, complex programs are fault free under
all circumstances. Faults can appear during the lifetime of a program and may be exposed during
live running. The faults are then corrected as part of the maintenance stage of the program
lifecycle.

EXTENSION ACTIVITY 12B
In small groups, research recent spectacular software failures. Choose one failure per group
and find out what went wrong and how it affected the organisation and their customers.
Summarise and present your group’s findings to the rest of the class.

12.3.2 Location, identification and correction of errors
Syntax errors are errors in the grammar of a source program. In the coding phase of the program
development lifecycle, programs are either compiled or interpreted so they can be executed.
During this operation, the syntax of the program is checked, and errors need to be corrected
before the program can be executed. Figure 12.10 shows an example of a syntax error being
found, and the IDE offering a possible reason for the error.

Figure 12.10

Many IDEs will offer suggestions about what syntax errors are and how to correct them.

Logic errors are errors in the logic of a program, meaning the program does not do what it is
supposed to do. These errors are usually found when the program is being tested. For example,
the program in Figure 12.11 will run, but the results will not be as expected.

Figure 12.11

Many IDEs will allow you to single step through a program to find errors (see Chapter 5, Section
5.2.4). You can also manually work through a program to check that it works as it should, using
tools such as a trace table. Trace tables show the process of dry-running a program with
columns showing the values of each variable as it changes.

Run-time errors happen when the program is executed. The program may halt unexpectedly or
go into an infinite loop and need to be stopped by brute force. If a program is being tested in an
IDE, then this type of error may be managed, and a suitable error message given, as shown
below.

If the program has already been released for use and a run-time error occurs, the developer
should be informed so that the program can be updated and re-released or a patch can be sent out
to all customers to solve the problem. A patch is a small program, released by the developers, to
run with an existing program to correct an error or provide extra functionality. The Windows
operating system is frequently patched and the process of downloading patches and updating the
program has been automated.

12.3.3 Program testing
Programs need to be rigorously tested before they are released. Tests begin from the moment
they are written; they should be documented to show that the program is robust and ready for
general use.

There needs to be a test strategy set out in the analysis stage of the program development
lifecycle showing an overview of the testing required to meet the requirements specified. This
shows how and when the program is to be tested.

In order to clarify what tests need to be performed, a test plan is drawn up showing all the stages
of testing and every test that will be performed. As the testing is carried out, the results of the
tests can be added to the plan showing that the program has met its requirements.

There are several formal methods of testing used to ensure that a program is robust and works to
the standard required. Although there is a testing stage in the program development lifecycle,
testing in some form occurs at every stage, from design to maintenance.

During the program design stage, pseudocode is written. This can be tested using a dry run, in
which the developer works through a program or module from a program manually and
documents the results using a trace table.

For example, a procedure to perform a calculation could be tested as follows.

The test data used could include 20 10 +, 20 10 −, 20 10 *, 20 10 /, 20 10 ? and 20 0 /.

The trace table below shows the value of each variable and any output.

Table 12.6

The errors found in the routine by performing the dry run have been highlighted in red. These
can now be corrected before this routine is coded.

ACTIVITY 12F
Correct the pseudocode and perform the dry run again to ensure that your corrections work.

ACTIVITY 12G
Using the pseudocode algorithm for the volume and surface area of a sphere in Section 12.2.1,
devise some test data and a trace table to test the algorithm.

Swap your test data and trace table with another student then perform the dry run and complete
the trace table.

Discuss any differences or problems you find.

A walkthrough is a formalised version of a dry run using pre-defined test cases. This is where
another member of the development team independently dry runs the pseudocode, or the
developer takes the team members through the dry run process. This is often done as a
demonstration.

During the program development and testing, each module is tested as set out in the test plan.
Test plans are often set out as a table; an example for the calculation procedure is shown below.

Table 12.7 An example of a calculation procedure set out as a table

The results from this testing show that the error in the subtraction calculation has not been fixed
and the routine is not trapping any abnormal data in the variables used by the calculation. These
errors will need correcting and then the routine will need to be retested.

EXTENSION ACTIVITY 12C
In the programming language you have chosen to use, write the procedure for calculations and
any other code necessary. Use and extend the test plan above to ensure that the calculation
module works as it should.

Several types of test data need to be used during testing:
• Normal test data that is to be accepted by a program and is used to show that the program is

working as expected.
• Abnormal test data that should be rejected by a program as it is unsuitable or could cause

problems.
• Extreme test data that is on the limit of that accepted by a program; for example, when testing

a validation rule such as number >= 12 AND number <= 32 the extreme test data would be 12
at the lower limit and 32 at the upper limit; both these values should be accepted.

• Boundary test data that is on the limit of that accepted by a program or data that is just
outside the limit of that rejected by a program; for example, when testing a validation rule such
as number >= 12 AND number <= 32 the boundary test data would be 12 and 11 at the lower
limit and 32 and 33 at the upper limit; 12 and 32 should be accepted, 11 and 33 should be
rejected.

ACTIVITY 12H
An algorithm is to be written to test whether a password is eight characters or more and 15
characters or less in length. The password must contain at least one digit, at least one capital
letter and no characters other than letters or digits.

Devise a set of test data to be used to test the password checking algorithm.

Discuss any problems there may be in devising a complete set of test data.

EXTENSION ACTIVITY 12D
In the programming language you have chosen to use, write a procedure to check that the
password conforms to the rules in Activity 12H. Use your test data from the previous activity
to write a test plan and test that your procedure works as it should.

As the program is being developed the following types of testing are used:
• White-box testing is the detailed testing of how each procedure works. This involves testing

the structure and logic of every path through a program module.
• Black-box testing tests a module’s inputs and outputs.
• Integration testing is the testing of any separately written modules to ensure that they work

together, during the testing phase of the program development lifecycle. If any of the modules
have not been written yet, this can include stub testing, which makes use of dummy modules
for testing purposes.

When the program has been completed, it is tested as a whole:

• Alpha testing is used first. The completed, or nearly completed, program is tested in-house by
the development team.

• Beta testing is then used. The completed program is tested by a small group of users before it
is generally released.

• Acceptance testing is then used for the completed program to prove to the customer that it
works as required in the environment in which it will be used.

12.3.4 Program maintenance
Program maintenance is not like maintaining a piece of equipment by replacing worn out parts.
Programs do not wear out, but they might not work correctly in unforeseen circumstances. Logic
or run-time errors that require correction may occur from time to time, or users may want to use
the program in a different way.

Program maintenance can usually be divided into three categories:
• Corrective maintenance is used to correct any errors that appear during use, for example

trapping a run-time error that had been missed during testing.
• Perfective maintenance is used to improve the performance of a program during its use, for

example improving the speed of response.
• Adaptive maintenance is used to alter a program so it can perform any new tasks required by

the customer, for example working with voice commands as well as keyboard entry.

ACTIVITY 12I
Analyse the pseudocode algorithm for the volume and surface area of the sphere in Section
12.2.1 and identify at least three improvements you could make to the functionality of this
algorithm.

ACTIVITY 12J
1 Explain, using examples, the difference between syntax and logic errors.
2 A programmer wants to test that a range check for values over 10 and under 100 works.

Identify three types of test data that should be used. Provide an example of each type of test
data and describe how the program should react to the data.

3 Identify three types of program maintenance and describe the role of each type of
maintenance.

End of chapter questions
1 When the guarantee on a computer runs out, the owner can take out insurance to cover

breakdown and repairs.
The price of the insurance is calculated from:
– the model of the computer
– the age of the computer
– the current insurance rates

Following an enquiry to the insurance company, the customer receives a quotation letter
with the price of the insurance. A program is to be produced.

The structure chart below shows the modular design for this process.

a) Copy the chart above and, using the letters A to D, add the labelling to the chart boxes.
[2]

Modules

A Send quotation letter

B Calculate price

C Produce insurance quotation

D Input computer details

b) Using the letters E to J, complete the labelling on the chart.
[4]

Some of these letters will be used more than once.

Data items

E CustomerName

F CustomerEmail

G Model

H Age

I PolicyCharge

J PolicyNumber

Cambridge International AS & A Level Computer Science 9608 Paper 22 Q3 June 2015
2 A 1D array, Product, of type STRING is used to store information about a range of products

in a shop. There are 100 elements in the array. Each element stores one data item.

The format of each data item is as follows:

<ProductID><ProductName>
– ProductID is a four-character string of numerals
– ProductName is a variable-length string

The following pseudocode is an initial attempt at defining a procedure, ArraySort, which
will perform a bubble sort on Product. The array is to be sorted in ascending order of
ProductID. Line numbers have been added for identification purposes only.

The pseudocode contains a number of errors.

Copy and complete the following table to show:
 – the line number of the error
 – the error itself
 – the correction that is required.

[8]

 Note:
– If the same error occurs on more than one line, you should only refer to it ONCE.
– Lack of optimisation should not be regarded as an error.

Line number Error Correction

01 Wrong procedure name –“SortArray” PROCEDURE ArraySort

Cambridge International AS & A Level Computer Science 9608 Paper 22 Q3 November
2017

3 A company creates two new websites, Site X and Site Y, for selling bicycles.

Various programs are to be written to process the sales data.

These programs will use data about daily sales made from Site X (using variable SalesX)
and Site Y (using variable SalesY).

Data for the first 28 days is shown below.

a) Name the data structure to be used in a program for SalesX.
[2]

b) The programmer writes a program from the following pseudocode design.

i) Trace the execution of this pseudocode by copying and completing this trace table.
[4]

x DayNumber OUTPUT

0

ii) Describe, in detail, what this algorithm does.
[3]

Cambridge International AS & A Level Computer Science 9608 Paper 22 Q5 parts
(a) and (b) June 2015

	AS LEVEL
	12 Software development
	12.1 Program development lifecycle
	12.2 Program design
	12.3 Program testing and maintenance

