
11 Programming
In this chapter, you will learn about
• declaring and assigning values to variables and constants
• using programming constructs, including iteration with IF and CASE structures
• using programming constructs, including selection with three different types of loop: count

controlled, post-condition and pre-condition
• writing structured programs defining and using procedures and functions.

WHAT YOU SHOULD ALREADY KNOW
Try this activity before you read the first part of this chapter.

Write an algorithm, using pseudocode, to sort a list of ten numbers. The numbers are to be
input with appropriate prompts, stored in an array, sorted in ascending order and then searched
for the number 27. The sorted list is to be output, as well as a message stating whether 27 was
found or not.

Write and test your algorithm using your chosen programming language. Ensure that you test
your program with test data that includes 27 and test data without 27.

 11.1 Programming basics
Key terms
Constant – a named value that cannot change during the execution of a program.

Variable – a named value that can change during the execution of a program.

Function – a set of statements that can be grouped together and easily called in a program
whenever required, rather than repeating all of the statements each time. Unlike a procedure, a
function always returns a value.

Library routine – a tested and ready-to-use routine available in the development system of a
programming language that can be incorporated into a program.

Procedure – a set of statements that can be grouped together and easily called in a program
whenever required, rather than repeating all of the statements each time.

In order to write a program that performs a specific task or solves a given problem, the solution
to the task or problem needs to be designed and then coded. This chapter demonstrates the
programming tools used when coding a solution, including basic statements, constructs and
structures.

11.1.1 Constants and variables
A constant is a named value that cannot change during the execution of a program. A variable
is a named value that can change during the execution of a program. All variables and constants
should be declared before use. Constants will always be assigned a value when declared. It is
good practice to assign a value to any variables that are used, so that the programmer is certain of
the starting value.

It is good practice to create an identifier list and check that every variable on that list has been
declared and a value assigned before any data manipulation is programmed.

Note that some programming languages (for example, Python) do not support the declaration of
variables and the concept of a constant; in such cases, the assignment of a value at the start of a
program will ensure that a variable of the correct data type can be used. An identifier that is to be
used as a constant can also be assigned a value. However, it is important that the programming
concepts of data declaration and the difference between variables and constants are clearly
understood and can be demonstrated using pseudocode.

Example 11.1
Write an algorithm using pseudocode to calculate and output the volume and surface area of a
sphere for any radius that is input.

Solution
First create an identifier table.

Identifier name Description

radius Stores radius input

volume Stores result of volume calculation

surfaceArea Stores result of surface area calculation

pi Constant set to 3.142

Then declare constants and variables in pseudocode.

Provide pseudocode for input, process and output.

Input usually includes some output in the form of prompts stating what should be input.

Check the value of the radius, to ensure that it is suitable.

Calculate the volume and the surface area; this is the processing part of the algorithm.

Finally, the results of the calculations need to be output.

Table 11.1 shows the declaration of some of the constants and variables from Example 11.1 in
the three prescribed programming languages.

While the Cambridge International AS Level syllabus does not require you to be able to write
program code, the ability to do so will increase your understanding, and will be particularly
beneficial if you are studying the full Cambridge International A Level course.

Declarations
of constants
and variables

Language

pi = 3.142 Python does not require any separate declarations and makes no difference
between constants and variables

Dim radius As
Decimal

Dim volume
As Decimal

Dim
surfaceArea As
Decimal

Const pi As
Decimal =
3.142

Or

Dim radius,
volume,
surfaceArea As

In VB, constants and variables are declared before use. Declarations can be
single statements or can contain multiple declarations in a single statement.
Constants can be explicitly typed as shown or implicitly typed, for example:

Const pi = 3.142

Decimal

Public Const pi
As Decimal =
3.142

final double PI
= 3.142;

:

:

double volume
= (4 / 3) * PI *
radius * radius
* radius;

In Java, constant values are declared as variables with a final value so no
changes can be made. These final variable names are usually capitalised to
show they cannot be changed. Variables are often declared as they are used
rather than at the start of the code

Table 11.1

Table 11.2 below gives examples of the input statements in the three prescribed programming
languages.

Input statements Language

radius = float(input("Please enter
the radius of the sphere "))

Python combines the prompt with the input statement
and the type of the input

Console.Write("Please enter the
radius of the sphere ")

radius =
Decimal.Parse(Console.ReadLine())

VB uses a separate prompt and input. The input
specifies the type

import java.util.Scanner;

:

Scanner myObj = new
Scanner(System.in);

:

System.out.println("Please enter the
radius of the sphere ");

double radius =
myObj.nextDouble();

In Java, the input library has to be imported at the start
of the program and an input object is set up. Java uses a
separate prompt and input. The input specifies the type
and declares the variable of the same type

Table 11.2

Table 11.3 below shows how to check the value of the radius in each of the three programming
languages.

Check that the value of the radius is a positive
number

Language

while radius <= 0: Python uses a check at the start of the
loop

Do

:

Loop Until radius > 0

VB uses a check at the end of the loop

do

{

:

}

while (radius <= 0);

Java uses a check at the end of the loop

Table 11.3

Table 11.4 below shows how to calculate the volume and the surface area in each of the three
programming languages.

Calculate the volume and the surface area Language

volume = (4 / 3) * pi * radius * radius * radius

surfaceArea = 4 * pi * radius * radius

Python

volume = (4 / 3) * pi * radius * radius * radius

surfaceArea = 4 * pi * radius * radius

VB

double volume = (4 / 3) * PI * radius * radius * radius;

double surfaceArea = 4 * PI * radius * radius;

Java (variables declared as used)

Table 11.4

Table 11.5 below shows how to output the results in each of the three programming languages.

Output the results Language

print("Volume is ", volume)

print("Surface area is ", surfaceArea)

Python uses a comma

Console.WriteLine("Volume is " & volume)

Console.WriteLine ("Surface area is " & surfaceArea)

VB uses &

System.out.println("Volume is " + volume);

System.out.println("Surface area is " + surfaceArea);

Java uses +

Table 11.5

The complete programs are shown below:

Python

VB

Java

ACTIVITY 11A
Write and test the algorithm in your chosen programming language. Extend the algorithm to
allow for more than one calculation, ending when –1 is input, and test it with this test data: 4.7,
34, –11, 0 and –1.

Many programming languages contain built-in functions ready to be used. For example, DIV
returns the integer part of a division and MOD returns the remainder. For example, DIV(10,3)
will return 3, and MOD(10,3) will return 1. See Section 11.3.2 for guidance on how to define a
function.

Functions are used for string manipulation. Strings are one of the best ways of storing data. The
comparison of data stored in a string has many uses, for example, checking passwords,
usernames and other memorable data.

Example 11.2
Write an algorithm using pseudocode to check that the length of a password and the first and
last letter of a password input is correct.

You can use these string manipulation functions:

LENGTH(anyString : STRING) RETURNS INTEGER returns the integer value representing

the length of anyString.

RIGHT(anyString: STRING, x : INTEGER) RETURNS STRING returns rightmost x
characters from anyString.

LEFT(anyString: STRING, x : INTEGER) RETURNS STRING returns leftmost x characters
from anyString.

MID(anyString: STRING, x : INTEGER, y : INTEGER) RETURNS STRING returns y
characters starting at position x from anyString.

Solution
First create an identifier table.

Identifier name Description

storedPassword Stores password

inputPassword Stores password to be checked

size Stores length of password to be checked

Table 11.6 below shows the string manipulation functions for Example 11.2 in the three
prescribed programming languages.

String manipulation functions Language

len(inputPassword)

inputPassword[0]

inputPassword[-1:]

Python

first character of string

last character of string

Len(inputPassword)

Left(inputPassword, 1)

VB

first character of string

Right(inputPassword, 1) last character of string

int size =inputPassword.length();

inputPassword.charAt(0)

inputPassword.charAt(size - 1)

Java

first character of string

last character of string

Table 11.6

ACTIVITY 11B
Write the algorithm in Example 11.2 in your chosen programming language and test it with
this test data: "Sad", "Cheese", "Secret" and "secret". Find out how you could extend your
program to match upper or lower-case letters.

11.1.2 Library routines
Many programming language development systems include library routines that are ready to
incorporate into a program. These routines are fully tested and ready for use. A programming
language IDE usually includes a standard library of functions and procedures as well as an
interpreter and/or a compiler. These standard library routines perform tasks such as input/output
that are required by most programs.

ACTIVITY 11C
Find out about the standard libraries that are included with the programming language you use.
Identify at least six routines included in the library.

11.2 Programming constructs
11.2.1 CASE and IF
The algorithm in Example 11.2 uses a nested IF statement, as there are two different choices to
be made. Where there are several different choices to be made, a CASE statement should be used
for clarity.

Figure 11.1 shows that choices can be made using a condition based on
• the value of the identifier being considered, for example < 10
• a range of values that the identifier can take, for example 1:10
• the exact value that the identifier can take, for example 10.

And a final catch all for an identifier that met none of the conditions given OTHERWISE.

For each criterion there can be one or many statements to execute.

Figure 11.1

For example, choices from a menu can be managed by the use of a CASE statement.

Table 11.7 below shows the case statements in VB and Java. Python does not use this construct.

Table 11.7

ACTIVITY 11D
1 Write an algorithm using pseudocode to either add, subtract, multiply or divide two numbers

and output the answer. The two numbers are to be input with appropriate prompts followed
by +, −, * or /. Any other character is to be rejected.

2 Check that your pseudocode algorithm works by writing a short program in your chosen
programming language from your pseudocode statements using the same names for your
identifiers.

11.2.2 Loops
Loops enable sections of code to be repeated as required. They can be constructed in different
ways to meet the requirements of an algorithm.
1 a count-controlled loop FOR … NEXT
2 a post-condition loop REPEAT … UNTIL
3 a pre-condition loop WHILE … DO … ENDWHILE

In order to program efficiently, it is important to select the appropriate loop structure to
efficiently solve the problem. For example, it is better to use a REPEAT … UNTIL loop rather
than a WHILE … DO … ENDWHILE loop for a validation check. The statements inside the
loop must always be executed at least once and there is no need for a second input statement.

For example, to check that a value is between 0 and 10 inclusive.

Table 11.8 below shows post-condition loops in VB and Java. Python only uses pre-condition
loops.

Table 11.8

Table 11.9 below shows pre-condition loops in each of the three programming languages.

Pre-condition loops Language

Python

VB

Java

Table 11.9

Where the number of repetitions is known, a FOR … NEXT loop is the best choice, as the loop
counter does not have to be managed by the programmer.

ACTIVITY 11E
Write and test a short program in your chosen programming language to check that an input
value is between 0 and 10 inclusive.

1.3 Structured programming
Key terms
Parameter – a variable applied to a procedure or function that allows one to pass in a value for
the procedure to use.

By value – a method of passing a parameter to a procedure in which the value of the variable
cannot be changed by the procedure.

By reference – a method of passing a parameter to a procedure in which the value of the
variable can be changed by the procedure.

Header (procedure or function) – the first statement in the definition of a procedure or
function, which contains its name, any parameters passed to it, and, for a function, the type of
the return value.

Argument – the value passed to a procedure or function.

11.3.1 Procedures
When writing an algorithm, there are often similar tasks to perform that make use of the same
groups of statements. Instead of repeating these statements every time they are required, many
programming languages make use of subroutines or named procedures. A procedure is defined
once and can be called many times within a program.

Different terminology is used by some programming languages. Procedures are
• void functions in Python
• subroutines in VB
• methods in Java.

To be consistent, we will use the term procedure – you will need to check what to do in your
chosen programming language.

A procedure can be defined in pseudocode, as follows:

The procedure can then be called many times:

For example, a procedure to print a line of stars would be defined as follows:

And used like this:

ACTIVITY 11F
Using the procedure definition and call given for your chosen programming language, write a
short program to define and call a procedure to write a line of stars.

Table 11.10 below shows how to define this procedure in each of the three prescribed

programming languages.

Table 11.10

Table 11.11 shows how it can be used.

Procedure – call Language

stars() Python

stars() VB

stars(); Java

Table 11.11

It is often useful to pass a value to a procedure that can be used to modify the action(s) taken. For
example, to decide how many stars would be output. This is done by passing a parameter when
the procedure is called.

A procedure with parameters can be defined in pseudocode, as follows:

The procedure can then be called many times:

The procedure to print a line with a given number stars would be defined as follows:

And used like this, to print seven stars:

The interface between a procedure and a program must match the procedure definition. When a
procedure is defined with parameters, the parameters in the procedure call must match those in
the procedure definition.

Table 11.12 below shows how to define a procedure with a parameter in each of the three

programming languages.

Table 11.12

ACTIVITY 11G
Extend your short program in your chosen programming language to define and use a
procedure that accepts a parameter to write a line with a given number of stars.

There are two methods of passing a parameter to a procedure: by value and by reference. When
a parameter is passed by value, if a variable is used, the value of that variable cannot be changed
within the procedure. When a parameter is passed by reference the value of the variable passed
as the parameter can be changed by the procedure.

A procedure with parameters passed by reference can be defined in pseudocode as follows:

For example, a procedure to convert a temperature from Fahrenheit to Celsius could be defined
as follows:

And used as follows:

Table 11.13 below shows how to pass parameters in the three programming languages.

Passing parameters Language

Def celsius(temperature): Python

all data is passed by value

Sub celsius(temperature As Decimal)

Sub celsius(ByVal temperature As Decimal)

Sub celsius(ByRef temperature As Decimal)

VB

parameter passed implicitly by value

parameter passed by value

parameter passed by reference

static void celsius(double temperature) Java

all data is passed by value

Table 11.13

ACTIVITY 11H
Write an algorithm in pseudocode to use a procedure, with a parameter passed by reference, to
convert a temperature from Celsius to Fahrenheit.

11.3.2 Functions
When writing an algorithm, there are often similar calculations or tasks to perform that make use
of the same groups of statements and always produce an answer. Instead of repeating these
statements every time they are required, many programming languages make use of subroutines
or named functions. A function always returns a value; it is defined once and can be called many
times within a program. Functions can be used on the right-hand side of an expression.

Different terminology is used by some programming languages. Functions are
• fruitful functions in Python
• functions in VB
• methods with returns in Java.

A function without parameters is defined in pseudocode as follows:

A function with parameters is defined in pseudocode as follows:

The keyword RETURN is used as one of the statements in a function to specify the value to be
returned. This is usually the last statement in the function definition. There can be more than one
RETURN used in a function if there are different paths through its statements. This technique
needs to be used with great care. For example, a function to find a substring of a given length
starting at a given place in a string that returns a null string rather than an error could be:

Functions are used as part of an expression. The value returned by the function is used in the
expression.

For example, the procedure used previously to convert a temperature from Fahrenheit to Celsius
could be written as a function:

And used as follows:

The interface between a function and a program must match the function definition. When a
function is defined with parameters, the parameters in the function call must match those in the
function definition.

Table 11.14 below shows how to write this function in each of the three programming languages.

Table 11.14

ACTIVITY 11I
Re-write the algorithm you wrote in Activity 11H as a function, with a parameter, to convert a
temperature from Celsius to Fahrenheit. Test your algorithm by writing a short program in
your chosen programming language to define and use this function. Note the differences in
your programs and state, with reasons, which is the better structure to use for this algorithm: a
procedure or a function.

When procedures and functions are defined, the first statement in the definition is a header,
which contains
• the name of the procedure or function
• any parameters passed to the procedure or function
• the type of the return value for a function.

When procedures or functions are called, the parameters or arguments (the values passed to the
procedure or function) must be in the same order as the parameters in the declaration header and
each argument must be of the same type as the parameter given in the header. Procedure calls are
single stand-alone statements and function calls form part of an expression on the right-hand
side.

End of chapter questions

1 Use pseudocode to declare these variables and constants.
You will need to decide which identifiers are variables and which are constants.

[6]

Identifier name Description

height Stores value input for length of height

maxHeight Maximum height, 25

width Stores value input for length of width

maxWidth Maximum width, 30

hypotenuse Stores calculated value of hypotenuse

area Stores calculated value of area

2 Write a pseudocode algorithm to input the height and width of a right-angled triangle and
check that these values are positive and less than the maximum values given in question 1.

[4]
3 a) For this question, you will need to use this function, which returns the real value of the

square root of anyPosVal:

Extend your algorithm for Question 2 to
i) calculate the hypotenuse

[2]
ii) calculate the area

[2]
iii) calculate the perimeter.

[2]
b) Provide a menu to choose which calculation to perform.

[3]
c) Check that all the above work by writing and testing a program in your chosen

programming language.
[6]

4 Explain what is meant by the term library routine.
Give two examples of uses of library routines.

[4]
5 Procedures and functions are subroutines.

Explain what is meant by
a) a procedure

[2]

b) a function
[2]

c) a parameter
[2]

d) a procedure or function header.
[2]

6 Explain the difference between
a) a procedure and a function

[2]
b) passing parameters by value and by reference

[2]
c) defining a procedure and calling a procedure.

[2]
7 A driver buys a new car.

The value of the car reduces each year by a percentage of its current value.
The percentage reduction is:
– in the first year, 40%
– in each following year, 20%
The driver writes a program to predict the value of the car in future years.
The program requirements are:
– enter the cost of the new car (to nearest $)
– calculate and output the value of the car at the end of each year
– the program will end when either the car is nine years old, or when the value is less than
$1000.
a) Study the incomplete pseudocode which follows in part b) and copy and complete this

identifier table.
[3]

Identifier Data type Description

b) Copy and complete the pseudocode for this design.
[6]

Cambridge International AS & A Level Computer Science 9608
Paper 21 Q5 November 2015

	AS LEVEL
	11 Programming
	11.1 Programming basics
	11.2 Programming constructs
	11.3 Structured programming

