
The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 1

System Software

OS managing resources

Processor management & the need for scheduling

Memory management (paging & virtual memory)

Disk thrashing & Virtual machine

Stages in the compilation of a program

Syntax diagrams & Backus-Naur Form (BNF)

notation

Reverse Polish Notation (RPN)

Purposes of operating

systems

The operating system (OS) must provide:

 Manage all hardware resources

 Interface user and machine

 Interface applications software and machine

 Data security

 Utility software

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 2

Purposes of operating

systems

The operating system (OS) must provide:

 management of all hardware resources:

 processor

 secondary storage filing system

 input/output devices

 an interface between the user and the machine

 an interface between applications software and
the machine

 security for the data on the system

 utility software to allow maintenance to be done

Purposes of operating

systems

 A computer system needs a program that begins
to run when the system is first switched on

 The operating system programs are stored on
disk so there is no operating system

 The Basic Input Output System (BIOS) which
starts a bootstrap program is stored in ROM

 The bootstrap program loads the operating
system into memory and sets it running

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 3

Purposes of operating

systems

 An operating system can provide facilities to have
more than one program stored in memory

 However, only one program accesses the CPU at
any given time; the rest are waiting

 For single user system  multi-programming

 For multi user system  time-sharing system

 OS can be considered from two viewpoints; an
internal viewpoint and an external viewpoint

 The internal viewpoint focuses on the best usage
of available resources

 The external viewpoint focuses on the facilities
made available for system usage

Purposes of operating

systems

Multi-tasking

 Processor works much faster than the human user

 Store more than one program in memory at the

same time to make full use of the processor,

 The processor gives time to each of these

programs in turn

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 4

The “boot up” process

Step 1:

 Run the power-on-self-test (POST) routine

 The POST routine resides in permanent memory
(ROM)

 It clears the registers in the CPU and loads the
address of the first instruction in the boot program
into the program counter (PC) register

The “boot up” process

Step 2:

 Run the boot program, which first checks itself

and the POST program

 The boot program is stored in read-only memory

(ROM) and contains the basic input/output system

(BIOS) structure

 The CPU then sends signals to check that all the

hardware is working properly

 This includes checking the buses, system clock,

RAM, disk drives and keyboard

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 5

The “boot up” process

Step 3:

 The boot program looks for an OS on the
available drives

 If no OS is found, an error message is produced

 Once found, the boot program looks for files which
contain the kernel - the core part of the OS

 The prime task of the kernel is to act as the
interrupt handler

The “boot up” process

Step 4:

 The OS searches the root directory on the disk for
a boot file (such as CONFIG.SYS) that contains
instructions to load various device drivers

 A file (such as AUTOEXEC.BAT) is then loaded to
ensure that the computer starts with the same
configuration each time it is switched on

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 6

Purposes of operating

systems

Multi-tasking

 Program A is waiting for the user’s input

 Program B is waiting to replenish paper in the

printer

 Then allocate processor time to program C

Purposes of operating

systems

Multi-programming

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 7

Purposes of operating

systems

 The three fundamental resources in a computer
system are:

 the CPU

 the memory

 the I/O (input/output) system

 Resource management relating to the CPU
concerns scheduling to ensure efficient usage

 Resource management relating to the memory
concerns optimum usage of main memory

 The I/O system relates to:

 Input and output that directly involves the user

 Input and output to storage devices while a
program is running

Purposes of operating

systems

 The I/O system

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 8

Purposes of operating

systems

 Bus structure is used to allow transfer of data
between an I/O device and memory

 The OS can ensure that I/O passes via the CPU
but for large quantities of data the operating
system can ensure direct transfer between
memory and an I/O device

Purposes of operating

systems

OS facilities provided for the user

 User interface may be made available as a
command line, a graphical display or a voice
recognition system

 The function is always to allow the user to
interact with running programs

 When a program involves use of a device, the
operating system provides the device driver

 OS provides a file system for a user to store data
and programs

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 9

Purposes of operating

systems

OS facilities provided for the user

 User chooses filenames and folder organisation

 User does not have to organise the physical data
storage on a disk

 For programmers, the OS supports the provision
of a programming environment

 This allows a program to be created and run
without the programmer being familiar with how
the processor functions

Purposes of operating

systems
OS facilities provided for the user

 OS provides a set of system calls that provide an
interface to the services it offers

 E.g. When data needs to be read from file, the
request for the file is converted into a system call
that causes the operating system to take charge,
find the file and make it available to the program

 An extension of this concept is when an operating
system provides an application programming
interface (API)

 Each API call fulfils a specific function such as
creating a screen icon

 The API might use one or more system calls

 The API aims to provide portability for a program

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 10

Purposes of operating

systems
OS structure

 An OS is structured to provide a platform for
both resource management and the provision
of facilities for users

 The logical structure of the OS provides two
modes of operation

 User mode is the one available for the user or
an application program

 The alternative has a number of different
names of which the most often used are
'privileged mode' or 'kernel mode'

 The difference between the two is that kernel
mode has sole access to part of the memory and
to certain system functions that user mode
cannot access

Purposes of operating

systems
OS structure

 It is normal for the operating system to be
separated into:

 a kernel which runs all of the time and

 the remainder which runs in user mode

 In this model, application programs or utility
programs could make system calls to the Kernel

 However, to work properly each higher layer
needs to be fully serviced by a lower layer (as in
a network protocol stack)

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 11

Purposes of operating

systems
OS structure

Purposes of operating

systems
OS structure

 A more flexible approach uses a modular
structure

 The structure works by the kernel calling on the
individual services when required

 It could possibly be associated with a micro-
kernel structure where the functionality in the
kernel is reduced to the absolute minimum

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 12

Process scheduling
 A long-term or high-level scheduler program

controls the selection of a program stored on disk
to be moved into main memory

 Occasionally a program has to be taken back to
disk due to the memory getting overcrowded

 This is controlled by a medium-term scheduler

 When the program is loaded in memory, a short-
term or low-level scheduler controls when it
has access to the CPU

 The OS must have a strategy for deciding which

program is next given use of the processor

 Low-level scheduling: The process of deciding

on the allocation of processor time/usage

 High-level scheduling: The process of deciding

the order in which new programs are loaded into

primary memory

Process scheduling

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 13

 OS must allocate processor time in an appropriate

way to all tasks / requests (low-level scheduling)

 The scheduling algorithm should ensure that the

processor is working to its full potential

 Simplest technique is to allocate equal time slots

to each task

 Priorities then will be meaningless (???)

Process scheduling

Process scheduling

I/O-bound job

 When a program makes little use of the processor

 Because of few simple calculations,

 It performs a lot of printing,

 Requests user feedback continuously,

 Continuously reading data from the disk drive

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 14

Process scheduling

Processor-bound job

 When a program makes a great deal of use of the
processor

 Collects one set of data from the drive

 Carries complex calculations,

 Produces very few printouts at the end of
processing

Process scheduling

Input/output-bound and processor-bound jobs

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 15

Process scheduling
Input/output-bound and processor-bound jobs

 The OS should give:

 high priority to I/O-bound programs

 low priority to processor-bound programs.

 The following must have high priority:

 safety-critical applications,

 online applications,

 interactive programs,

 real-time applications

 Batch-processing programs should be given low

priority

Process scheduling

Objectives of scheduling

 Maximise the use of the whole of the computer

system

 Be fair to all programs

 Provide a reasonable response time:

 to users in front of online applications programs

at a terminal

 to batch-processing programs (i.e. to meet the

deadline for production of the final output)

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 16

Process scheduling

Objectives of scheduling

 Prevent the computer system failing if it is

becoming overloaded

 Ensure that the system is consistent by giving

similar response times to similar activities

Process scheduling

Objectives of scheduling

 Factors to consider when assessing if the

objective can be met:

 Priority: low priority to processor-bound jobs

 Type of job:

 real-time processing must be done quickly so

that the next input can be affected

 batch processing only has to meet the deadline

for final outputs

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 17

Process scheduling

Objectives of scheduling

 Resource requirements: the amount of processor

time needed to complete the job,

 The memory required, the amount of I/O time

needed

 Waiting time: the time the job has been waiting to

be loaded into main memory

Process scheduling
Scheduling algorithms

 A scheduling algorithm can be preemptive or

non-preemptive

 A preemptive algorithm can halt a process that

would otherwise continue running undisturbed

 If an algorithm is preemptive it may involve

prioritising processes

 The simplest possible algorithm is first come first

served (FCFS)

 This is a non-preemptive algorithm and can be

implemented by placing the processes in a first-in

first-out (FIFO) queue

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 18

Process scheduling

Scheduling algorithms

 A round-robin algorithm allocates a time slice to

each process

 Therefore it is preemptive, because a process will

be halted when its time slice has run out

 It can be implemented as a FIFO queue

 It normally does not involve prioritising processes

 However, if separate queues are created for

processes of different priorities then each queue

could be scheduled using a round-robin

algorithm

Process scheduling

Scheduling algorithms

 A priority-based scheduling algorithm is more

complicated

 One reason for this is that every time a new

process enters the ready queue or when a running

process is halted, the priorities for the processes

may have to be re –evaluated

 The other reason is that whatever scheme is used

to judge priority level it will require some

computation

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 19

Process scheduling

Scheduling algorithms

 Possible criteria are:

 Estimated time of process execution

 Estimated remaining time for execution

 Length of time already spent in the ready queue

 Whether the process is I/O bound or CPU bound

Process scheduling
Scheduling algorithms

 More than one of these criteria might be

considered

 Clearly, estimating a time for execution may not

be easy

 Some processes require extensive I/O, for

instance printing wage slips for employees

 There is very little CPU usage for such a process

so it makes sense to allocate it a high priority so

that the small amount of CPU usage can take

place

 The process will then change to the waiting state

while the printing takes place

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 20

Process scheduling

Scheduling strategies

 Shortest job first

 Jobs in the ready queue are sorted in ascending

order of the total processing time the job is

expected to need

 New jobs are added to the queue in such a way

as to preserve this order

Process scheduling

Scheduling strategies

 Round robin

 Each job is given a maximum length of processor

time (a time slice) after which the job is put at the

back of the ready queue and the job at the front of

the queue is given use of the processor

 If a job is completed before its time slice is used

up, it leaves the system

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 21

Process scheduling

Scheduling strategies

 Shortest remaining time

 Jobs in the ready queue are sorted in ascending

order of the remaining processing time the job is

expected to need

 Good for short jobs

 There is a danger of long jobs being prevented

from running because they never manage to get

to the front of the queue

Process scheduling

Job status

 When entering the system, a job is placed in the

ready queue by the high-level scheduler (HLS)

 Moving jobs in and out of the ready state is done

by the low-level scheduler (LLS)

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 22

Process scheduling

 A process can be defined as 'a program being

executed'

 This definition is perhaps better slightly modified

to include the state when the program first arrives

in memory

 At this stage a process control block (PCB) can

be created in memory ready to receive data when

the process is executed

 Once in memory the state of the process can

change

Process scheduling

 The transitions between the states can be

described as follows:

 A new process arrives in memory and a PCB is

created; it changes to the ready state

 A process in the ready state is given access to the

CPU by the dispatcher; it changes to the

running state

 A process in the running state is halted by an

interrupt; it returns to the ready state

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 23

Process scheduling
 A process in the running state cannot progress until

some event has occurred (I/O perhaps); it changes

to the waiting state (sometimes called the

'suspended' or 'blocked' state)

 A process in the waiting state is notified that an

event is completed; it returns to the ready state

 A process in the running state completes execution;

it changes to the terminated state

 It is possible for a process to be separated into

different parts for execution called threads where

each thread is handled as though it were a process

Process scheduling

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 24

Process scheduling
Job status

 ready - the job is waiting for use of the processor

 running - the job is currently using the processor

 blocked - the job is unable to use the processor at

present

Process scheduling

Interrupts

The fundamental process of the Von Neumann

computer architecture

Executes a sequence of program instructions

stored in main memory

The fetch-execute cycle (fetch-decode-execute)

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 25

Process scheduling
Interrupts

Some interrupts are caused by errors that

prematurely terminate a running process

Otherwise there are two reasons for interrupts:

 Processes consist of alternating periods of

CPU usage and I/O usage

 I/O takes far too long for the CPU to remain

idle waiting for it to complete

 The interrupt mechanism is used when a

process in the running state makes a system

call requiring an I/O operation and has to

change to the waiting state

Process scheduling
Interrupts

 The scheduler decides to halt the process

for one of several reasons

Whatever the reason for an interrupt, the OS

kernel must invoke an interrupt-handling routine

This may have to decide on the priority of an

interrupt

One required action is that the current values

stored in registers must be recorded in the process

control block

This allows the process to continue execution

when it eventually returns to the running state

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 26

Process scheduling

Interrupts

Process scheduling

Interrupts

Satisfactory if processor understands (decodes

correctly) the instructions

Program maintains the processor control

Sometimes this normal order of operation is

interrupted in order for:

 Processor time to be given to other programs

loaded

 Service an important routine

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 27

Process scheduling

Interrupts

 Interrupt Requests trigger these changes

 Interrupts are messages to the CPU

They will be addressed by the CPU

They will be serviced according to the severity of

the request (e.g. program running is more

“important” than the one requesting)

Process scheduling
Interrupts

 There are various types of Interrupt Requests

 An I/O interrupt is generated by an I/O device

to signal that a data transfer is complete or an

error (e.g. printer out of paper) has occurred,

 A timer interrupt is generated by an internal

clock to indicate that the processor must attend

to some time-critical activity,

 A hardware interrupt is generated by any

hardware problem, (e.g. a power failure which

indicates that the OS must close down as

safely as possible.

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 28

Process scheduling
Interrupts

Process scheduling

Interrupts

After the execution of an instruction

Processor checks to see if an interrupt has

occurred

 If so, the OS services the interrupt if it is more

important than the task already being carried out

This involves running a program called the

interrupt service routine (ISR)

Every interrupt signal, e.g. “printer out of paper”,

has its own ISR that “services” the interrupt

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 29

Process scheduling

Interrupts

Potential problem if too many interrupts requests

ask to be serviced (current program may take too

long to be completed)

OS “remembers” the state of the program

interrupted and the data involved

Stores contents of registers (already filled with data

from the interrupted program)

Restores them back to continue processing

Process scheduling

Interrupts

Another problem arises when an IRQ currently

serviced is interrupted also

Simplest solution is to create a queue of all IRQs

Queue is called Priority Queue

Order of programs in queue will be based on the

priority level of each task

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 30

Process scheduling
Interrupts

Process scheduling
Interrupts

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 31

Memory management

 The process of the operating system managing
the use of the computer’s primary memory

 The memory management module within the OS
must:

 keep track of memory used

 keep track of memory which is available

 make memory available when a program
finishes execution

 constantly check whether or not there is enough
memory available to load a new program

 ensure that two loaded programs do not attempt
to use the same memory space

Memory management

Memory management includes:

Provision of protected memory space for the OS

kernel

The loading of a program into memory requires

defining the memory addresses for the program

itself, for associated procedures and for the data

required by the program

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 32

Memory management

Memory management includes:

 In a multiprogramming system, this might not be

straight forward

The storage of processes in main memory can get

fragmented in the same way as happens for files

stored on a hard disk

There may be a need for the medium-term

scheduler to move a process out of main memory

to ease the problem

Memory management

One memory management technique is to partition

memory with the aim of loading the whole of a

process into one partition

Dynamic partitioning allows the partition size to

match the process size

An extension of this idea is to divide larger

processes into segments, with each segment

loaded into a dynamic partition

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 33

Memory management

 For a job to be able to use the processor, the job

must be loaded into the computer’s main memory

 If memory permits, several jobs can be loaded

 Programs and their data must be protected from

the actions of other jobs being processed

Memory management

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 34

Memory management

 When jobs finish and unloaded from memory,
empty slots are created

 OS must fit programs/data in empty slots
(LOADER)

 Easy solution to shift loaded program/data files to
other memory locations to allow for space for new
programs/data

 Loads CPU with a great deal of processing time

 Second solution is to split new program/data and
save in non-consecutive memory addresses

Memory management

 Relative addresses must be used

 Loader takes care of loading jobs in memory and

adjusting addresses

 Addresses may be calculated in relation to the

address calculated for the 1st instruction (Relative

addressing)

 Program/data blocks in non-consecutive

addresses must be linked

 i.e. LINKER

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 35

Memory management

Paging

 Divide memory into equal-sized sections, called

pages

 Pages are of equal size and each job is allocated

a number of pages

 The allocated pages may be in order, or they may

be scattered across the memory

Memory management

Paging

 Divisions are pre-determined

 Data and programs have to be loaded into the

available memory to get the best fit possible

 The division of the available memory is into units

called page frames

 A program is divided into equal-sized blocks called

pages

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 36

Memory management

Segmentation

 Divide memory space required into small
sections called segments

 Relies on the OS (the linker and loader) to store
each part of the program in memory

 Too many memory “gaps” after repeated
load/unload to/from memory operations

 Segmentation is far more complex to control than
paging because of the different and unpredictable
nature of the sizes of the segments

Memory management

Virtual memory

 Jobs are loaded into memory when they are

needed, using a paging technique

 When a program is running, only those pages that

contain required code need to be loaded

 If there is not enough space in memory to have all

pages stored then the movement of pages into

memory can take a disproportionate amount of

time

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 37

Memory management

Virtual memory

 Led to the creation of small amounts of fast

access storage between the drive and the

memory

 OS now has part of the program in memory and

part on the hard drive

 It needs to predict which pages are most likely

to be accessed next and store them in virtual

memory

Memory management

Virtual memory

 The use of library (DLL) files fits exactly with this

strategy for managing the memory

 1. Load the main program module

 2. Load each DLL file(s) required for processing

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 38

Memory management

Advantages of Virtual Memory

 Very large programs can be run even though there

is not an equally large amount of memory

 Only part of a program needs to be in memory at

any one time

 E.g.: the index tables for a database could be

permanently in memory but the full tables could be

brought in only when required

Memory management

Disadvantages of Virtual Memory

 The increase of system overhead when running

virtual memory

 The worst problem is 'disk thrashing', when part

of a process on one page requires another page

which is on disk

 When that page is loaded it almost immediately

requires the original page again

 This can lead to almost perpetual loading and

unloading of pages

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 39

Memory management

Spooling

 The process of managing that the input and

output for different jobs do not become mixed up

while they are waiting to be output

 Print jobs are sent to a spool queue on a fast

access storage device, such as a disk

 They are queued on the disk, ready for the printer

to deal with them in order

Memory management

Spooling

 What actually happens is that the jobs for the

printer are stored as files on the hard drive

 The only thing that is stored in the spool queue is

a reference to where the print file is located

 When the reference to that job gets to the top of

the queue, the file is retrieved from storage and

sent to the printer

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 40

Memory management

Spooling

 A spool queue is not necessarily a “first-in–first-

out” queue

 Such a conventional queue would put new jobs (or

references to them) at the end of the queue

 In a spool queue, the more important jobs can be

inserted further up the queue

 The data structure then becomes a priority

queue

Memory management
Spooling

 A spool queue of jobs it isn’t really a queue of the

jobs, only a queue of references to them

 It does not follow rules of traditional queues as it

might allow “pushing in”

 Keeps output from different jobs separate

 Saves the user having to wait for the processor

until the output is actually printed by a printer (a

relatively slow device)

 Lets the processor get on with further processing

while the jobs are queued up

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 41

Memory management

Memory management in Windows 7

 The Windows 7 Task Manager utility shows the
large number of programs and processes which
are running before the user loads any applications
software

 The user then loads the Windows Media Player

 The Task Manager utility (bottom) reports the
large increase in processor usage

 The Task Manager utility also shows:

 the usage of the kernel part of the OS

 the current usage of memory

 that Windows uses paged memory allocation

Memory management
Spooling

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 42

Virtual Machine

 The principle of a virtual machine is that a process
interacts directly with a software interface
provided by the operating system

 The kernel of the operating system handles all of
the interactions with the actual hardware of the
host system

 The software interface provided for the virtual
machine provides an exact copy of the hardware

Virtual Machine

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 43

Virtual Machine

 The advantage of the virtual machine approach is

that more than one different operating system can

be made available on one computer system

 This is particularly valuable if an organisation has

legacy systems and wishes to continue to use the

software but does not wish to keep the aged

hardware

 Alternatively, the same operating system can be

made available many times

 Different companies can be offered their own

virtual machine running as a server

Virtual Machine

 One drawback to using a virtual machine is the

time and effort required for implementation

 Another is the fact that the implementation will not

offer the same level of performance that would be

obtained on a normal system

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 44

Stages of translation

 The translator must be able to “understand” what
the program does

 Not the same understanding as by programmer

 “Understand” the structure of each line of code

 Each statement of a high-level language program
undergoes through 3 (or 4?) stages of compilation

Stages of translation

 The front-end program performs analysis of the source

code and produces an intermediate code that expresses

completely the semantics (the meaning) of the source

code

 The back-end program then takes this intermediate code

as input and performs synthesis of object code

 Compiler does not stop at every option but accumulates

them all

 Identifies all syntax errors and some logic errors

 Remaining logic errors require testing to be found

 Runtime errors are identified only via testing

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 45

Stages of translation

 Avg = (T1 + T2) / 3 2

 (logic error NOT identified by translators)

 Avg = (T1 + T2) / 2

 IF Grade > 50 THEN

 CONSOLE.WRITELINE(“FAIL PASS”)

 TESTING - Intensive and extensive testing

 X=log(0) … ERROR (runtime or executable error)

Stages of translation

 The four stages of front-end analysis are:

 lexical analysis

 syntax analysis

 semantic analysis

 intermediate code generation

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 46

Lexical analysis

 Lexical analyser will:

 Convert the high-level language code into a stream of

tokens

 E.g. Input  1001000110100100

 Replace single characters by their corresponding

ASCII values

 Create symbol table by collecting/adding new

identifiers (names /& data types) on the symbol table

 Remove comments/annotations and redundant

(white) spaces, such as indentation

Lexical analysis

 Lexical analyser will:

 Report errors when found

 E.g. INNPUT or INUT instead of INPUT

 Checks the rules for each identifier

 E.g. Length of an identifier name used should be

less than 64 bytes long

 E.g. An identifier name cannot start using a

number

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 47

Lexical analysis

 Lexical analyser will:

 Usually create a hash table to store two or more

identifiers hashing to the same address/memory

location

 Lexical analysis may take longer than the other

stages of compilation

Syntax analysis

 Syntax analyser:

 Checks that the various rules of the language have
been followed by every statement in the source
code

 Gets the output code of the lexical analyser

 Parse the code to check that it is grammatically
correct

 i.e. ensures that it follows the rules defining
each identifier and statement

 These rules are defined by the Backus-Naur
Form (BNF) notation or a syntax diagram

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 48

Syntax analysis

E.g.

<statement> := <variable><math_operator><variable>

Assume that the code

C:=A+B is received

Parser reads:

<variable><math_operator><variable>

But this is <statement>

Thus the syntax is correct Syntax analyser identifies a
correct statement, otherwise an error message is
returned

Syntax analysis

Using:

<statement> := <variable><math_operator><variable>

Check the following lines of code

C:=(A+B)

C:=A/B

C:=A+B/A

 - brackets are not part of the definition



 - only 1 operator and 1 variables are

defined

More on parsing in Chapter 3.5

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 49

Syntax analysis

 Syntax analyser:

 Identifies any invalid identifiers or instructions not
spotted during lexical analysis

 E.g. invalid identifiers in a programming
language that does not require declaration prior
to their use

 Carries semantic checks

 i.e. Checks the meaning of the statements; what
they are meant to do including label checks, flow
of control checks and declaration checks

 E.g. check that specific subs/functions called,
actually exist

Syntax analysis

 Syntax analyser:

 Ensure that correct language constructs are used

 E.g. Proper use of IF…ENDIF statements

 E.g. Expected public/global identifiers declared
locally

 Ensure that all identifiers have been declared and
are used correctly, including data types

 This is the stage where data types, including their
scope, are added to the symbol table

 Produce error messages pointing to any errors
identified

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 50

Semantic analysis
 Semantic analyser:

 Semantic analysis is about establishing the full
meaning of the code

 An annotated abstract syntax tree is constructed to
record this information

 For the identifiers in this tree an associated set of
attributes is established including, for example, the
data type

 These attributes are also recorded in the symbol
table

 An often -used intermediate code created by the
last stage of front-end analysis is a three address
code

 As an example the following assignment statement
has five identifiers requiring five addresses

Semantic analysis

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 51

Semantic analysis

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 52

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 53

Code generation and

optimisation

 Upon reaching this stage, it implies that all errors
have been corrected

 Thus the source code must be converted to a form
understood by the CPU  create object code
required by the CPU that:

 Will be processed as fast as possible

 Be as short as possible

Code generation and

optimisation

IN

STO Num1

IN

STO Num2

GET Num1

ADD Num2

OUT

 Will be processed as fast as possible

 Be as short as possible

IN

STO X

IN

ADD X

OUT

Optimise

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 54

Linkers and Loaders

 Programs are usually built up from small, self-
contained blocks of code called subprograms,
procedures or modules, which can be reused
whenever needed

 Each module can be compiled separately

 Each reusable object code can be stored in a
“library” of routines

 Advantages of reusable object code:

 Already tested / works

 Saves time, not having to write and/or compile
again

Linkers and Loaders

 Variable names and memory addresses are
different from one function of the library routine to
another

 Can be resolved by using two utility programs

 The Loader and the Linker

 A loader loads all the modules into memory and
sorts out difficulties such as changes of addresses
for the variables

 A linker links the modules together by making sure
that references from one module to another are
correct

 If one module calls another, it is important that the
correct module is called and that the correct data
are sent to the called module

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 55

Compilation errors

 During lexical analysis:

 Keywords in the program code are identified and

turned into tokens of binary numbers ready for the

next phase

 Lexical analyser expects to find the keyword in a

lookup table that contains the appropriate

replacement token

 If there is an error in a keyword, the analyser does

not find a reference to it in the lookup table

Compilation errors

 If the analyser decides that the incorrect keyword

is a variable, it inserts the name into the symbol

table and does not report an error

 However, if the language requires that variable

names should be declared, the name is not

recognised and a diagnostic error is output

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 56

Compilation errors

 At the syntax analysis stage, it is recognised that

keywords are missing and errors are reported

 The task of the syntax analyser is to ensure that

statements in the code follow the rules that are laid

down for particular keywords

 Errors are reported if the remainder of the

statement does not match the “pattern” laid down

for the specific keyword

Compilation errors

 Compiler does not stop at every option but

accumulates them all

 Identifies all syntax errors and some logic errors

 Remaining logic errors require testing to be found

 Runtime errors are identified only via testing

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 57

Backus-Naur form and syntax

diagrams

 Using syntax diagrams:

Backus-Naur form and syntax

diagrams

Using the derived definition of the integer, define a
positive or negative integer

 <signed_integer> ::=<sign><integer>

 <integer> ::= <digit>|<digit><integer>

 <digit> ::= 0|1|2|3|4|5|6|7|8|9

 <sign> ::= +|-

5 Is an integer and acceptable signed integer

-34 is a signed integer

+2-4 is not a signed integer (-4 is not an integer)

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 58

Backus-Naur form and syntax

diagrams

 Define a positive or negative integer using syntax
diagrams:

Backus-Naur form and syntax

diagrams

 Now try to define a variable for a programming
language you are creating

 Must start with an upper case letter

 A-F are the only acceptable letters

 1-5 are the only acceptable numbers

 Can contain any number of acceptable letters or
numbers

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 59

Backus-Naur form and syntax

diagrams
 1. <variable> ::= <letter>|<letter><character>

 2. <character> ::= <letter>|<letter><character>|

<digit>|<digit><character>

 3. <letter> ::= A|B|C|D|E|F

 4. <digit> ::= 1|2|3|4|5

 Test your definition

 A Rules 1,3

 A2 Rules 1,3,2,4

 3A Rules 1,3 Fails

 A1BC2 Rules 1,3,2,4,2,3,2,3,2,4

 ABS Rules 1,3,2,3,2,3 Fails

 AB7 Rules 1,3,2,3,2,4 Fails




X


X
X

Backus-Naur form and syntax

diagrams

 Syntax diagrams for the variable defined for your
programming language

1

2

3

4

5

digit
A

B

C

D

E

F

letter

letter

digit

character letter

character

variable

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 60

Backus-Naur form and syntax

diagrams

 Now try to define a variable

 Think of the rules defining a variable

 Must start with a letter

 Letters can be upper or lower case

 Can contain any number of alphanumeric
characters and certain symbols

 Finally, TEST the definition

Backus-Naur form and syntax

diagrams

 <variable> ::= <letter>|<letter><character>

 <character> ::= <letter>|<letter><character>|

<digit>|<digit><character>|

<symbol>|<symbol><character>

 <letter> ::= <uppercase>|<lowercase>

 <uppercase> ::= A|B|C|D|E|F|G|H|I|J|K|L|M|

N|O|P|Q|R|S|T|U|V|W|X|Y|Z

 <lowercase> ::= a|b|c|d|e|f|g|h|i|j|k|l|m|

n|o|p|q|r|s|t|u|v|w|x|y|z

 <digit> ::= 0|1|2|3|4|5|6|7|8|9

 <symbol> ::= _|-|&|.

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 61

Backus-Naur form and syntax

diagrams
 Test your definition

 A

 A2

 8A

 A1B.C2

 &ABS

 AB_7




X


X


Backus-Naur form and syntax

diagrams

 Syntax diagram for defining the variable

_

-

&

.

symbol

letter

character

variable

A

B

C

Y

Z

uppercase
a

b

c

y

z

lowercase
0

1

2

8

9

digit

uppercase

lowercase

letter
letter

digit

character

symbol

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 62

Reverse Polish notation

 An expression is written (and read) as:

 A + B

 The arithmetic operation is in the middle of the two
operands A, B

 This is called INFIX notation

 If the arithmetic operation is placed at the beginning:

 + A B  PREFIX (also known as Polish notation)

 If the arithmetic operation is placed at the end:

 A B +  POSTFIX (also known as Reverse Polish

notation)

Reverse Polish notation

Reverse Polish is important in computing because:

 expressions written in postfix notation are
unambiguous

 expressions do not need brackets

 expressions can be evaluated using a stack

5 – 3 + 2 = 4 --- Inorder

In RPN: 5 3 – 2 +

5 – (3 + 2) = 0 --- Inorder

In RPN: 5 3 2 + -

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 63

Reverse Polish notation

 E.g. Expression: A - B / C

 Infix: A - B / C

 Prefix: - A / B C

 Reverse Polish Notation (Postfix): A B C / -

 Note that the order of operands NEVER changes

 E.g. Expression: (A - B) / C

 Infix: (A - B) / C

 Prefix: - A B / C

 Reverse Polish Notation (Postfix): A B - C /

Converting between reverse

Polish notation and the infix form

of algebraic expressions

 Traversing binary trees

TOP

RIGHTLEFT

Always read from left to right. The TOP is read according

to the traversal methodology:

Polish notation Reverse Polish notation

Prefix Infix Postfix

(Preorder) (Inorder) (Postorder)

Top Left Right Left Top Right Left Right Top

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 64

Converting between reverse

Polish notation and the infix form

of algebraic expressions

+

BA

Polish notation Reverse Polish notation

Prefix Infix Postfix

(Preorder) (Inorder) (Postorder)

Top Left Right Left Top Right Left Right Top

+ A B A + B A B +

Converting between reverse

Polish notation and the infix form

of algebraic expressions

+

CB

Polish notation Infix Reverse Polish notation

Top Left Right Left Top Right Left Right Top

* A + B C A * (B + C) A B C + *

*

A

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 65

Converting between reverse

Polish notation and the infix form

of algebraic expressions

Express the following in Polish and Reverse Polish

Notation:

a. (A + B) / (C - D) RPN: AB+CD-/

b. A + B / C - D

c. A * (B - (C + D)) RPN: ABCD+-*

d. A * B - C + D

e. A - B * (C + D)

Converting between reverse

Polish notation and the infix form

of algebraic expressions

Polish notation Infix Reverse Polish notation

/ + A B - C D (A + B) / (C - D) A B + C D - /

a. (A + B) / (C - D)

Using Infix notation construct the binary tree

-

DC

+

A B

/

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 66

Converting between reverse

Polish notation and the infix form

of algebraic expressions

Polish notation Infix Reverse Polish notation

- + A / B C D A + B / C - D A B C / + D -

b. A + B / C - D

Binary tree (Using Infix notation)

-

D

C

+

A

B

/

Converting between reverse

Polish notation and the infix form

of algebraic expressions

Polish notation Infix Reverse Polish notation

* A - B + C D A * (B - (C + D)) A B C D + - *

c. A * (B - (C + D))

Binary tree

+

DC

*

A

B

-

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 67

Converting between reverse

Polish notation and the infix form

of algebraic expressions

Polish notation Infix Reverse Polish notation

+ - * A B C D A * B - C + D A B * C - D +

d. A * B - C + D

Binary tree +

D

C*

A B

-

Converting between reverse

Polish notation and the infix form

of algebraic expressions

Polish notation Infix Reverse Polish notation

- A * B + C D A - B * (C + D) A B C D + * -

e. A - B * (C + D)

Binary tree

+

DC

-

A

B

*

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 68

Converting between reverse

Polish notation and the infix form

of algebraic expressions

Using a stack

 To convert a reverse Polish expression to infix notation
or to evaluate the expression, a stack can be used

1. Each operand is placed (pushed) onto the stack in turn
until it meets an operator

2. Read the operator

3. The two top values in the stack are read (popped)

4. The operator is carried out on them

5. The result is placed on the stack

6. Repeat until the final infix expression is the only item
on the stack or the expression has been evaluated

Converting between reverse

Polish notation and the infix form

of algebraic expressions

 E.g. A * (B + C)

 Reverse Polish notation: A B C + *

B + C
A A*(B+C)

+
*

A
B
A

C
B
A

Push A Push B Push C

The Grammar School Nicosia Academic Year 2022-2023

Computer Science 9618 Class 7 69

Converting between reverse

Polish notation and the infix form

of algebraic expressions
 E.g. A * B + C

 Reverse Polish notation: A B * C +

C
A * B A*B+C

+

*

A
B
A A * B

Push A Push B Push C Pop

(A*B+C)

Converting between reverse

Polish notation and the infix form

of algebraic expressions
 E.g. 5 * 8 + 3

 Reverse Polish notation: 5 8 * 3 +

3
40 43

+

*

5
8
5 40

Push 5 Push 8 Push 3 Pop 43

